Environmental Management

, Volume 57, Issue 3, pp 740–752 | Cite as

The Western South Atlantic Ocean in a High-CO2 World: Current Measurement Capabilities and Perspectives

  • Rodrigo KerrEmail author
  • Letícia C. da Cunha
  • Ruy K. P. Kikuchi
  • Paulo A. Horta
  • Rosane G. Ito
  • Marius N. Müller
  • Iole B. M. Orselli
  • Jannine M. Lencina-Avila
  • Manoela R. de Orte
  • Laura Sordo
  • Bárbara R. Pinheiro
  • Frédéric K. Bonou
  • Nadine Schubert
  • Ellie Bergstrom
  • Margareth S. Copertino


An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network ( authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.


Ocean acidification Western South Atlantic Ocean Marine ecosystems Mitigation and adaptation Ecosystem management 



This review contributes to the activities of the BrOA Network (funded by CNPq Nos. 481670/2010-6, 485967/2012-0, 311877/2013-3, 405585/2013-6, 482557/2013-3, 445506/2014-8; FAPERGS No. 2075-2551/13-7; FAPESP No. 2014/22273-1; CAPES No. 23038.001421/2014-30 and scholarships, Fundação Boticário de Proteção a Natureza No. 0956-20122) and resulted from Joint BrOA-SOLAS Workshop discussions that were held in Santos (March 21–22, 2015) as part of the Third International Symposium on the Effects of Climate Change on the World’s Oceans. We thank all 24 participants who collaborated during that period, particularly Arne Körtzinger, Cristian Vargas, David Osborn, Jean-Pierre Gattuso, Kirsten Isensee, and Silvana Birchenough, who provided considerable input. We also thank the supporters of the BrOA Network’s formation, including Andrew Dickson, Christopher Langdon, Ilana Wainer, Joan Kleypas, Lisa Robbins, and Libby Jewett, who encouraged and collaborated with us during the initial implementation of the network. R.K.P.K. and P.A.H. also thank CNPq fellowship grants.

Supplementary material

267_2015_630_MOESM1_ESM.docx (72 kb)
Supplementary material 1 (DOCX 72 kb)


  1. Abril G, Deborde J, Savoye N, Mathieu F, Moreira-Turcq P, Artigas F, Meziane T et al (2013) Export of 13C-depleted dissolved inorganic carbon from a tidal forest bordering the Amazon estuary. Estuar Coast Shelf S 129:23–27. doi: 10.1016/j.ecss.2013.06.020 CrossRefGoogle Scholar
  2. Abril G, Martinez J, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T et al (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. doi: 10.1038/nature12797 CrossRefGoogle Scholar
  3. Amado-Filho GM, Pereira-Filho GH (2012) Rhodolith beds in Brazil: a new potential habitat for marine bioprospection. Braz J Pharm 22(4):782–788Google Scholar
  4. Amado-Filho GM, Moura RL, Bastos AC, Salgado LT, Sumida PY, Guth AZ, Francini-Filho RB et al (2012) Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS One 7(4):e35171. doi: 10.1371/journal.pone.0035171 CrossRefGoogle Scholar
  5. Araujo M, Noriega C, Lefèvre N (2014) Nutrients and carbon fluxes in the estuaries of major rivers flowing into the tropical Atlantic. Front Mar Sci. doi: 10.3389/fmars.2014.00010 Google Scholar
  6. Arruda R, Calil PHR, Bianchi AA, Doney SC, Gruber N, Lima I, Turi C (2015) Air–sea CO2 fluxes and the controls on ocean surface pCO2 variability in coastal and open-ocean southwestern Atlantic Ocean: a modeling study. Biogeosciences 12:5793–5809. doi: 10.5194/bg-12-5793-2015 CrossRefGoogle Scholar
  7. Barbera C, Bordehore C, Borg JA, Glémarec M, Grall J, Hall-Spencer JM, de la Huz C et al (2003) Conservation and management of northeast Atlantic and Mediterranean maerl beds. Aquat Conserv 13:865–876CrossRefGoogle Scholar
  8. Barton A, Waldbusser GG, Feely RA, Weisberg SB, Newton JA, Hales B, Cudd S, Eudeline B, Langdon CJ, Jefferds I et al (2015) Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 28(2):146–159. doi: 10.5670/oceanog.2015.38 CrossRefGoogle Scholar
  9. Bernardes M, Knoppers B, Rezende C, Souza W, Ovalle A (2012) Land-sea interface features of four estuaries on the South America Atlantic coast. Braz J Biol 72:761–774. doi: 10.1590/S1519-69842012000400011 CrossRefGoogle Scholar
  10. Bianchi AA, Bianucci L, Piola AR, Pino DR, Schloss I, Poisson A, Balestrini CF (2005) Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. J Geophys Res-Oceans 110:C07003CrossRefGoogle Scholar
  11. Bianchi AA, Pino DR, Perlender HGI, Osiroff AP, Segura V, Lutz V, Clara ML et al (2009) Annual balance and seasonal variability of sea-air CO2 fluxes in the Patagonia Sea: their relationship with fronts and chlorophyll distribution. J Geophys Res-Oceans 114:C03018. doi: 10.1029/2008JC004854 CrossRefGoogle Scholar
  12. Bosence D, Wilson J (2003) Maerl growth, carbonate production rates and accumulation rates in the northeast Atlantic. Aquat Conserv 13:821–831CrossRefGoogle Scholar
  13. Bourlès B, Lumpkin R, McPhaden MJ, Hernandez F, Nobre P, Campos E, Yu L et al (2008) The PIRATA Program: history, accomplishments, and future directions. B Am Meteorol Soc 89:1111–1125. doi: 10.1175/2008BAMS2462.1 CrossRefGoogle Scholar
  14. Boyd PW, Lennartz ST, Glover DM, Doney SC (2015) Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat Clim Chang 5:71–79. doi: 10.1038/nclimate2441 CrossRefGoogle Scholar
  15. Camp EF, Krause S-L, Santos LMF, Naumann MS, Kikuchi RKP, Smith DJ, Wild C, Suggett DJ (2015) The “Flexi-Chamber”: a novel cost-effective in situ respirometry chamber for coral physiological measurements. PLoS One 10:e0138800. doi: 10.1371/journal.pone.0138800 CrossRefGoogle Scholar
  16. CBD, Secretariat of the Convention on Biological Diversity (2014) An updated synthesis of the impacts of ocean acidification on marine biodiversity. In: Hennige S, Roberts JM, Williamson P (ed) Montreal, Technical Series No. 75, p 99Google Scholar
  17. Cesar H, Burke L, Pet-Soede L (2003) The economics of world-wide coral reef degradation. Cesar environmental economics consulting—WWFGoogle Scholar
  18. Chen C-TA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res Pt II 56:578–590. doi: 10.1016/j.dsr2.2009.01.001 CrossRefGoogle Scholar
  19. Ciotti AM, Odebrecht C, Fillmann G, Möller OO (1995) Freshwater outflow and subtropical convergence influence on phytoplankton biomass on the southern Brazilian continental shelf. Cont Shelf Res 15:1737–1756. doi: 10.1016/0278-4343(94)00091-Z CrossRefGoogle Scholar
  20. Cooley SR, Doney SC (2009) Anticipating ocean acidification’s economic consequences for commercial fisheries. Environ Res Lett 4:1–8CrossRefGoogle Scholar
  21. Cooley SR, Coles VJ, Subramaniam A, Yager PL (2007) Seasonal variations in the Amazon plume-related atmospheric carbon sink. Global Biogeochem Cycl 21:GB3014. doi: 10.1029/2006GB002831 CrossRefGoogle Scholar
  22. Cotovicz LC Jr, Knoppers BA, Brandini N, Costa Santos SJ, Abril G (2015) A large CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosci Discuss 12:4671–4720. doi: 10.5194/bgd-12-4671-2015 CrossRefGoogle Scholar
  23. Cruz ICS, Loiola M, Albuquerque T, Reis R, de Anchieta CC, Nunes J, Reimer JD, Mizuyama M et al (2015) Effect of phase shift from corals to zoantharia on reef fish assemblages. PLoS One 10:e0116944CrossRefGoogle Scholar
  24. da Cunha LC, Buitenhuis ET (2013) Riverine influence on the tropical Atlantic Ocean biogeochemistry. Biogeosciences 10(10):6357–6373. doi: 10.5194/bg-10-6357-2013 CrossRefGoogle Scholar
  25. da Silva Tiburcio ASX, Koening ML, de Macêdo SJ, de Castro Melo PAM (2011) A comunidade microfitoplanctônica do Arquipélago de São Pedro e São Paulo (Atlântico Norte-Equatorial): variação diurna e espacial. Biota Neotrop 11:203–215. doi: 10.1590/S1676-06032011000200021 CrossRefGoogle Scholar
  26. Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3Google Scholar
  27. Dominguez JML (2009) The coastal zone of Brazil. In: Dillenburg SR, Hesp PA (eds) Geology and geomorphology of holocene coastal barriers of Brazil. Springer, Berlin, pp 17–51CrossRefGoogle Scholar
  28. Doney SC, Balch WM, Fabry VJ, Feely RA (2009a) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22(4):16–25. doi: 10.5670/oceanog.2009.93 CrossRefGoogle Scholar
  29. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009b) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefGoogle Scholar
  30. Duarte G, Calderon EN, Pereira CM, Marangoni LFB, Santos HF, Peixoto RS, Bianchini A, Castro CB (2015) A novel marine mesocosm facility to study global warming, water quality, and ocean acidification. Ecol Evol. doi: 10.1002/ece3.1670 Google Scholar
  31. Elfes CT, Longo C, Halpern BS, Hardy D, Scarborough C, Best BD, Pinheiro T et al (2014) A regional-scale ocean health index for Brazil. PLoS One 9(4):e92589. doi: 10.1371/journal.pone.0092589 CrossRefGoogle Scholar
  32. Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169CrossRefGoogle Scholar
  33. Ferreira BP, Maida M (2006) Monitoramento dos recifes de coral do Brasil (Série Biodiversidade), 18. MMA, Brasília, p 250Google Scholar
  34. Ferreira BP, Costa MBSF, Coxey MS, Gaspar ALB, Veleda D, Araujo M (2012) The effects of sea surface temperature anomalies on oceanic coral reef systems in the southwestern tropical Atlantic. Coral Reefs 32:441–454CrossRefGoogle Scholar
  35. Frankignoulle M, Borges AV (2001) European continental shelf as a significant sink for atmospheric carbon dioxide. Global Biogeochem Cycle 15(3):569–576CrossRefGoogle Scholar
  36. Gruber N (1998) Anthropogenic CO2 in the Atlantic Ocean. Global Biogeochem Cycle 12:165–191CrossRefGoogle Scholar
  37. Gruber N, Hauri C, Lachkar Z, Loher D, Frölicher TL, Plattner GK (2012) Rapid progression of ocean acidification in the California Current System. Science 337(6091):220CrossRefGoogle Scholar
  38. Hatje V, Costa MF, da Cunha LC (2014) Oceanography and chemistry: bridging knowledge in favor of the oceans and society. Quim Nova 36(10):1497–1508CrossRefGoogle Scholar
  39. Hendriks IE, Duarte CM, Olsen YS, Steckbauer A, Ramajo L, Moore TS, Trotter JA et al (2015) Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuar Coast Shelf S 152:A1–A8CrossRefGoogle Scholar
  40. Horta PA, Vieira-Pinto T, Martins CD, Sissini MN, Ramlov F, Lhullier C, Scherner F, et al (2012) Evaluation of impacts of climate change and local stressors on the biotechnological potential of marine macroalgae: a brief theoretical discussion of likely scenarios. Rev Bras Farmacogn 22(4):768–774CrossRefGoogle Scholar
  41. Ibànhez JSP, Diverres D, Araujo M, Lefèvre N (2015) Seasonal and interannual variability of sea-air CO2 fluxes in the tropical Atlantic affected by the Amazon River plume. Global Biogeochem Cycles 30:1–40. doi: 10.1002/2015GB005110 Google Scholar
  42. Ito RG (2014) Acidificação do Oceano Austral. In: Nastari A (ed) Antártica, 2048—Mudanças climáticas e equilíbrio global. MarinaBooks, São Paulo, pp 60–65Google Scholar
  43. Ito R, Garcia CAE, Tavano VM. Net sea-air CO2 fluxes and modelled pCO2 in the southwestern subtropical Atlantic continental shelf during spring 2010 and summer 2011. Cont Shelf Res. (under review)Google Scholar
  44. Ito RG, Schneider B, Thomas H (2005) Distribution of surface fCO2 and air-sea fluxes in the Southwestern subtropical Atlantic and adjacent continental shelf. J Marine Syst 56:227–242CrossRefGoogle Scholar
  45. Jiang LQ, Cai W-J, Wang Y, Bauer JE (2013) Influence of terrestrial inputs on continental shelf carbon dioxide. Biogeosciences 10:839–849CrossRefGoogle Scholar
  46. Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. Peer J 2:e411CrossRefGoogle Scholar
  47. Kerr R, da Cunha LC, Souza MFL, Perreti A (2012) First report of the Brazilian Ocean Acidification Research Group, Rio Grande, Brazil, BrOA Network. doi: 10.13140/RG.2.1.2312.5202
  48. Kerr R, da Cunha LC, Ito RG (2014) Second report of the Brazilian Ocean Acidification Research Group, Rio Grande, Brazil, BrOA Network. doi: 10.13140/RG.2.1.2574.6643
  49. Kikuchi RKP, Leão ZMAN, Oliveira MDM (2010) Conservation status and spatial patterns of AGRRA vitality indices in Southwestern Atlantic reefs. Rev Biol Trop 58(Suppl 1):1–31Google Scholar
  50. Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 2:108–117CrossRefGoogle Scholar
  51. Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biol 19:103–132CrossRefGoogle Scholar
  52. Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117CrossRefGoogle Scholar
  53. Laborel JL (1969) Madreporaires et hydrocoralliaires recifaux des côtes brésiliennes. Systematique, ecologie, repartition verticale et geographie. Ann Inst Oceanogr Paris 47:171–229Google Scholar
  54. Laruelle GG, Dürr HH, Lauerwald R, Hartmann J, Slomp CP, Goossens N, Regnier PAG (2013) Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol Earth Syst Sci 17(5):2029–2051. doi: 10.5194/hess-17-2029-2013 CrossRefGoogle Scholar
  55. Laruelle GG, Lauerwald R, Pfeil B, Regnier P (2014) Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochem Cycles. doi: 10.1002/2014GB004832 Google Scholar
  56. Laruelle GG, Lauerwald R, Rotschi J, Raymond A, Hartmann J, Reginier P (2015) Seasonal response of air–water CO2 exchange along the land–ocean aquatic continuum of the northeast North American coast. Biogeosciences 12:1447–1458. doi: 10.5194/bg-12-1447-2015 CrossRefGoogle Scholar
  57. Leão ZMAN, Kikuchi RKP (2011) Brazil, coral reefs. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Netherlands, pp 168–172CrossRefGoogle Scholar
  58. Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés JBT-LACR (ed) Latin American coral reefs. Elsevier Science, Amsterdam, pp 9–52CrossRefGoogle Scholar
  59. Leão ZMAN, Kikuchi RKP, Ferreira B, Neves EG, Sovierzoski HH, Oliveira MDM, Maida M et al (2015) Brazilian coral reefs in a time of global changes: a synthesis. Braz J OceanogrGoogle Scholar
  60. Lefèvre N, Urbano DF, Diverrès D, Francis G (2014) Impact of physical processes on the seasonal distribution of the fugacity of CO2 in the western tropical Atlantic. J Geophys Res Oceans 119(2):646–663. doi: 10.1002/2013JC009248 CrossRefGoogle Scholar
  61. Lencina-Avila JM, Ito R, Garcia CAE, Tavano VM. Sea-air carbon dioxide fluxes along 35°s in the Atlantic Ocean and adjacent continental shelves. Deep Sea Res I. (under review)Google Scholar
  62. Loiola M, Oliveira MDM, Kikuchi RKP (2013) Tolerance of Brazilian brain coral Mussismilia braziliensis to sediment and organic matter inputs. Mar Pollut Bull 77:55–62CrossRefGoogle Scholar
  63. Mathis JT, Feely RA (2013) Building an integrated coastal ocean acidification monitoring network in the U.S. Elem. Sci. Anthr. 1:000007. doi: 10.12952/journal.elementa.000007 CrossRefGoogle Scholar
  64. McCoy SJ, Kamenos NS (2015) Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. J Phycol 51:6–24CrossRefGoogle Scholar
  65. Meybeck M, Ragu A (2012) GEMS-GLORI world river discharge database. doi: 10.1594/PANGAEA.804574 Google Scholar
  66. Möller OO, Piola AR, Freitas AC, Campos EJD (2008) The effects of river discharge and seasonal winds on the shelf off southeastern South America. Cont Shelf Res 28:1607–1624. doi: 10.1016/j.csr.2008.03.012 CrossRefGoogle Scholar
  67. Moser GAO, Takanohashi RA, de Chagas Braz M et al (2014) Phytoplankton spatial distribution on the Continental Shelf off Rio de Janeiro, from Paraíba do Sul River to Cabo Frio. Hydrobiologia 728:1–21. doi: 10.1007/s10750-013-1791-3 CrossRefGoogle Scholar
  68. MPA—Ministério da Pesca e Aquicultura (2011) Boletim Estatístico da Pesca e Aquicultura 2011. Brasilia, p 60Google Scholar
  69. MPA—Ministério da Pesca e Aquicultura (2012). Boletim Estatístico da Pesca e Aquicultura-Brasil 2010. Brasilia, p 128Google Scholar
  70. Newton JA, Feely RA, Jewett EB, Williamson P, Mathis J (2014) Global ocean acidification observing network: requirements and governance plan.
  71. Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concern. Ophelia 41:199–219CrossRefGoogle Scholar
  72. Noriega CED, Araujo M (2014) Carbon dioxide emissions from estuaries of northern and northeastern Brazil. Sci Rep 4:6164. doi: 10.1038/srep06164 CrossRefGoogle Scholar
  73. Noriega CED, Araujo M, Lefèvre N (2013) Spatial and temporal variability of the CO2 fluxes in a tropical, highly urbanized estuary. Estuar Coast 36:1–18CrossRefGoogle Scholar
  74. Noriega CED, Araujo M, Lefèvre N, Montes MF, Gaspar F, Veleda D (2015) Spatial and temporal variability of CO2 fluxes in tropical estuarine systems near areas of high population density in Brazil. Reg Environ Change 15:619–630CrossRefGoogle Scholar
  75. Oliveira MDM (2008) Decline of Calcification Rates of the endemic coral Mussismilia braziliensis: thermal stress alerts in Brazil. In: Wilkinson C (ed) Status of coral reefs of the world: 2008, 1. Australian Institute of Marine Science, Cape Ferguson, QueenslandGoogle Scholar
  76. Ovalle ARC, Rezende CE, Lacerda LD, Silva CAR (1990) Factors affecting the hydrochemistry of a mangrove tidal creek, Sepetiba Bay, Brazil. Estuar Coast Shelf Sci 31:639–650. doi: 10.1016/0272-7714(90)90017-L CrossRefGoogle Scholar
  77. Padin XA, Vázquez-Rodríguez M, Castañol M, Velo A, Alonso-Pérez F, Gago J, Gilcoto M et al (2010) Air-sea CO2 fluxes in the Atlantic as measured during boreal spring and autumn. Biogeosciences 7:1587–1606CrossRefGoogle Scholar
  78. Pereira AF, Belém AL, Castro BM, Geremias R (2005) Tide-topography interaction along the eastern Brazilian shelf. Cont Shelf Res 25(12–13):1521–1539. doi: 10.1016/j.csr.2005.04.008 CrossRefGoogle Scholar
  79. Pereira-Filho GH, Amado-Filho GM, de Moura RL, Bastos AC, Guimarães SMPB, Salgado LT, Francini-Filho RB et al (2012) Extensive Rhodolith Beds Cover the Summits of Southwestern Atlantic Ocean Seamounts. J Coastal Res 279(1):261–269. doi: 10.2112/11T-00007.1 CrossRefGoogle Scholar
  80. Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (2010) Guide to best practices for ocean acidification research and data reporting, 260 p. Publications Office of the European Union, LuxembourgGoogle Scholar
  81. Ríos AF, Velo A, Pardo PC, Hoppema M, Pérez FF (2012) An update of anthropogenic CO2 storage rates in the western South Atlantic basin and the role of Antarctic Bottom Water. J Mar Syst 94:197–203. doi: 10.1016/j.jmarsys.2011.11.023 CrossRefGoogle Scholar
  82. Rocha CB, da Silveira ICA, Castro BM, Lima JAM (2014) Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S-28°S. J Geophys Res-Oceans 119:52–69. doi: 10.1002/2013JC009143 CrossRefGoogle Scholar
  83. Salt LA, van Heuven SMAC, Claus ME, Jones EM, de Baar HJW (2015) Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean. Biogeosciences 12:1387–1401. doi: 10.5194/bg-12-1387-2015 CrossRefGoogle Scholar
  84. Sarmento VC, Souza TP, Esteves AM, Santos PJP (2015) Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs. doi: 10.1007/s00338-015-1299-6 Google Scholar
  85. Silva AS, Leão ZMAN, Kikuchi RKP, Costa AB, Souza JRB (2013) Sedimentation in the coastal reefs of Abrolhos over the last decades. Cont Shelf Res 70:159–167CrossRefGoogle Scholar
  86. Souza MFL, Gomes VR, Freitas SS et al (2009) Net ecosystem metabolism and nonconservative fluxes of organic matter in a tropical mangrove estuary, Piauí River (NE of Brazil). Estuar Coasts 32:111–122. doi: 10.1007/s12237-008-9104-1 CrossRefGoogle Scholar
  87. Steller DL, Riosmena-Rodriguez R, Foster MS, Roberts CA (2003) Rhodolith bed diversity in the Gulf of California: the importance of rhodolith structure and consequences of disturbance. Aquat Conserv 13:S5–S20CrossRefGoogle Scholar
  88. Summerhayes CP, Coutinho PN, França AMC, Ellis JP (1975) Part III. Salvador to Fortaleza, Northeastern Brazil. In: Milliman JD, Summerhayes CP (eds) Upper continental margin sedimentation off Brazil. E. Schweizerbartsche Verlarsbuchhandlung, Sttutgart, pp 44–78Google Scholar
  89. Susini-Ribeiro SMM (1999) Biomass distribution of pico-, nano- and microplankton on the continental shelf of Abrolhos, East Brazil. Arch Fish Mar Res 47:271–284Google Scholar
  90. Tabarelli M, da Rocha CFD, Romanowski HP, Rocha O, de Lacerda LD (2013) PELD—CNPq: dez anos do Programa de Pesquisas Ecológicas de Longa Duração do Brasil: achados, lições e perspectivas. Editora Universitária da UFPE, Recife.
  91. Tsunogai S, Watanabe S, Sato T (1999) Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus B 51:701–712CrossRefGoogle Scholar
  92. Turra A, Cróquer A, Carranza A, Mansilla A, Areces AJ, Werlinger C, Martínez-Bayón C et al (2013) Global environmental changes: setting priorities for Latin American coastal habitats. Glob Change Biol 19:1965–1969. doi: 10.1111/gcb.12186 CrossRefGoogle Scholar
  93. Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coastal Shelf S 148:1–13CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Rodrigo Kerr
    • 1
    Email author
  • Letícia C. da Cunha
    • 2
  • Ruy K. P. Kikuchi
    • 3
  • Paulo A. Horta
    • 4
  • Rosane G. Ito
    • 5
  • Marius N. Müller
    • 5
  • Iole B. M. Orselli
    • 1
  • Jannine M. Lencina-Avila
    • 6
  • Manoela R. de Orte
    • 7
  • Laura Sordo
    • 8
  • Bárbara R. Pinheiro
    • 9
  • Frédéric K. Bonou
    • 9
  • Nadine Schubert
    • 4
    • 10
  • Ellie Bergstrom
    • 4
  • Margareth S. Copertino
    • 1
  1. 1.LEOC, Instituto de Oceanografia (IO)Universidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  2. 2.Faculdade de OceanografiaUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  3. 3.Departamento de Oceanografia & INCT AmbTropic, Instituto de GeociênciasUniversidade Federal da Bahia (UFBA)SalvadorBrazil
  4. 4.Departamento de Botânica, Centro de Ciências BiológicasUniversidade Federal de Santa Catarina (UFSC)FlorianópolisBrazil
  5. 5.Instituto OceanográficoUniversidade de São Paulo (USP)São PauloBrazil
  6. 6.IMAGES ESPACE-DEVUniversité de Perpignan Via Domitia (UPVD)Perpignan CedexFrance
  7. 7.Departamento de Ciências do MarUniversidade Federal de São Paulo (UNIFESP)SantosBrazil
  8. 8.Grupo de Ecologia e Plantas Marinhas (ALGAE), Centro de Ciências do MarUniversidade do Algarve (UALG)FaroPortugal
  9. 9.Departamento de OceanografiaUniversidade Federal de Pernambuco (UFPE)RecifeBrazil
  10. 10.Programa de Pós-Graduação em Oceanografia, Centro de Filosofia e Ciências HumanasUniversidade Federal de Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations