Environmental Management

, Volume 56, Issue 6, pp 1377–1396 | Cite as

Bioenergy and Biodiversity: Key Lessons from the Pan American Region

  • Keith L. Kline
  • Fernanda Silva Martinelli
  • Audrey L. Mayer
  • Rodrigo Medeiros
  • Camila Ortolan F. Oliveira
  • Gerd Sparovek
  • Arnaldo Walter
  • Lisa A. Venier
Article

Abstract

Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

Keywords

Biofuel Brazil Canada Ecological impacts Woody biomass Forest residue 

Notes

Acknowledgments

This paper was produced with support from Research Coordination Network NSF Grant CBET-1140152, RCN: SEES: A Research Coordination Network on Pan American Biofuels and Bioenergy Sustainability. Kline’s research was supported by the US Department of Energy (DOE) Bioenergy Technologies Office, the National Science Foundation IIA #1243444 NSF PIRE, and Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725.

References

  1. Alguacil MdM, Torrecillas E, Hernández G, Roldán A (2012) Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical system. PLoS One 7(4):e34887CrossRefGoogle Scholar
  2. Angelsen A (2007). Forest Cover Change in Space and Time: Combining the von Thülen and Forest Transition Theories. World Bank Policy Research Working Paper. World Bank. 4117:43Google Scholar
  3. Backhouse M (2013) A desapropriação sustentável da Amazônia. O caso de investimentos em dendê no Pará. Fair fuels? Working Paper 6. BerlinGoogle Scholar
  4. Barretto AGOP, Berndes G, Sparovek G, Wirsenius S (2013) Agricultural intensification in Brazil and its effects on land-use patterns: an analysis of the 1975–2006 period. Glob Change Biol 19:1804–1815CrossRefGoogle Scholar
  5. B.C. Ministry of Forests, Mines and Lands (2010) The State of British Columbia’s Forests, 3rd edn. Forest Practices and Investment Branch, Victoria. http://www.for.gov.bc.ca/hfp/sof/2010/SOF_2010_Web.pdf. Accessed Jan 2014
  6. Bentsen NS, Stupak I (2013) Imported wood fuels—a regionalised review of potential sourcing and sustainability challenges. Faculty of Science, Department of Geoscience and Natural Resource Management, University of Copenhagen. http://www.ens.dk/sites/ens.dk/files/undergrund-forsyning/vedvarende-energi/bioenergi/analyse-bioenergi-danmark/bentsen_stupak_2013b.pdf. Accessed 14 July 2014
  7. Berch S, Morris D, Malcolm J (2011) Intensive forest biomass harvesting and biodiversity in Canada: a summary of relevant issues 1. For Chron 87:478–487CrossRefGoogle Scholar
  8. Berg Å, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Especies de plantas, animales, y hongos en peligro en bosques Suecos: distribución y asociacines de hábitats. Conserv Biol 8:718–731CrossRefGoogle Scholar
  9. Berger AL, Palik B, D’Amato AW, Fraver S, Bradford JB, Nislow K, King D, Brooks RT (2013) Ecological impacts of energy-wood harvests: lessons from whole-tree harvesting and natural disturbance. J For 111:139–153Google Scholar
  10. Bogdanski B, Sun L, Peter B, Stennes B (2011) Markets for forest products following a large disturbance: opportunities and challenges from the mountain pine beetle outbreak in western Canada Information Report BC-X-429Google Scholar
  11. BONSUCRO (2011) Bonsucro Production Standard—version 3.0 March 2011—including Bonsucro Production Standard EUGoogle Scholar
  12. BONSUCRO (2015) Bonsucro Production Standard—news and statistics. http://bonsucro.com/site/in-numbers/
  13. Boons F, Mendoza A (2010) Constructing sustainable palm oil: how actors define sustainability. J Clean Prod 18:1686–1695CrossRefGoogle Scholar
  14. Brasil (2010) Programa Nacional de Produção e Uso de Biodiesel: inclusão social e desenvolvimento territorial. Ministério do Desenvolvimento Agrário, BrasiliaGoogle Scholar
  15. Brasil (2014) Statement by Brasil for the UNFCC ADP Technical Expert Meeting on land use. Policies, Practices and Technology, Bonn. http://unfccc.int/files/bodies/awg/application/pdf/statement_by_brazil.pdf. Accessed 14 July 2014
  16. Brazilian Institute of Geography and Statics (IBGE) (2015) SIDRA/PAM Table 1612 (variable harvested area of Sugarcane in 2013) consulted April 22, 2015. http://www.sidra.ibge.gov.br/
  17. British Columbia (BC) (2011) British Columbia’s Wood Pellet Industry June 2011. http://www.pellet.org/images/WoodPelletFactsheet.pdf. Accessed Jan 2014
  18. British Columbia (BC) (2012) Mountain pine beetle. http://www.for.gov.bc.ca/hfp/mountain_pine_beetle/facts.htm. Accessed Apr 2014
  19. Brown E, Dudley N, Lindhe A, Muhtaman DR, Stewart C, Synnott T (eds) (2013) Common guidance for the identification of high conservation values. http://www.hcvnetwork.org/resources/folder.2006-09-29.6584228415/2013_commonguidancev5. Accessed 14 July 2014
  20. Bryngelsson DK, Lindgren K (2013) Why large-scale bioenergy production on marginal land is unfeasible: a conceptual partial equilibrium analysis. Energy Policy 55:454–466CrossRefGoogle Scholar
  21. Bunnell F (2013) Social license in British Columbia: some implications for energy development. J Ecosyst Manag 14:1–16. http://jem.forrex.org/index.php/jem/article/viewFile/550/492. Accessed Jan 2014
  22. Bunnell F, Houde I (2010) Down wood and biodiversity—implications to forest practices. Environ Rev 18:397–421CrossRefGoogle Scholar
  23. Butler RA, Laurance WF (2009) Is oil palm the next emerging threat to Amazon? Trop Conserv Sci 2:1–10Google Scholar
  24. Butterbach-Bahl K, Kiese R (2013) Biofuel production on the margins. Nature 493:483–485CrossRefGoogle Scholar
  25. Center for International Forest Research (CIFOR) (2014) Statement prepared for the Bonn Technical Expert Meeting on land use of the UN Framework convention on climate change. http://www.cifor.org/cifor-argues-landscapes-approach-bonn-climate-change-conference/. Accessed 07 July 2014
  26. B.C. Chief Forester (2010) Chief Forester’s Guidance on Coarse Woody Debris Management. http://www.for.gov.bc.ca/ftp/HFP/external/!publish/FREP/extension/Chief%20Forester%20short%20CWD.pdf. Accessed Jan 2014
  27. Cocchi M, Nikolaisen L, Junginger M, Goh CS, Heinimö J, Bradley D, hess R, Jacobson J, Ovard LP, Thrän D, Hennig C, Deutmeyer M, Schouwenberg PP, Marchal D (2011) Global wood pellet industry market and trade study. IEA bioenergy, task 40: sustainable international bioenergy trade. http://www.bioenergytrade.org/downloads/t40-global-wood-pellet-market-study_final.pdf
  28. Conservation International (2011) Responsible cultivation areas for biofuels: sustainability in practice. Results from field-testing the RCA methodology in para state. http://www.conservation.org/global/celb/Documents/2011.05.04_RCA_Report_Para.pdf. Accessed 26 Dec 2013
  29. Daily Times (2013) Hopes for Vonore biofuel refinery remain elusive. Reported by Joel Davis. The Daily Times, Maryville. http://www.thedailytimes.com/news/hopes-for-vonore-biofuel-refinery-remain-elusive/article_042e0b4c-9553-5a8c-a81a-dfa2c159063d.html. Accessed 18 Aug 2014
  30. Dale VH, Kline KL (2013a) Issues in using landscape indicators to assess land changes. Ecol Indic 28:91–99. doi: 10.1016/j.ecolind.2012.10.007 CrossRefGoogle Scholar
  31. Dale VH, Kline KL (2013b) Modeling for integrating science and management. In: Brown DT, Robinson N, French H, Reed BC (eds) Land use and the carbon cycle: advances in integrated science, management, and policy. Cambridge University Press, New YorkGoogle Scholar
  32. Dale BE, Bals BD, Kim S, Eranki P (2010a) Biofuels done right: land efficient animal feeds enable environmental and energy benefits. Environ Sci Technol 44:8385–8389CrossRefGoogle Scholar
  33. Dale VH, Lowrance R, Mulholland P, Robertson GP (2010b) Bioenergy sustainability at the regional scale. Ecol Soc 15(4):23. http://www.ecologyandsociety.org/vol15/iss4/art23/
  34. Dale VH, Kline KL, Wiens J, Fargione J (2010c) Biofuels: implications for land use and biodiversity. Biofuels and Sustainability Reports, January 2010. Ecological Society of America, Washington, DCGoogle Scholar
  35. Dale VH, Kline KL, Wright LL, Perlack RD, Downing M, Graham RL (2011) Interactions among bioenergy feedstock choices, landscape dynamics, and land use. Ecol Appl 21:1039–1054CrossRefGoogle Scholar
  36. Dale VH, Kline KL, Perla D, Lucier A (2013) Communicating about bioenergy sustainability. Environ Manag 51(2):279–290. doi: 10.1007/s00267-012-0014-4 CrossRefGoogle Scholar
  37. Dale BE, Anderson J, Brown R, Csonka S, Dale V, Herwick G, Jackson R, Jordan N, Kaffka S, Kline K, Lynd L, Malmstrom C, Ong R, Richard T, Taylor C, Wang M (2014) Take a closer look: biofuels can support environmental, economic and social goals. Environ Sci Technol 48:7200–7203CrossRefGoogle Scholar
  38. Dale VH, Parish ES and Kline KL (2015) Risks to global biodiversity from fossil-fuel production exceed those from biofuel production. Biofuels Bioprod Bioref 9(2):177–189CrossRefGoogle Scholar
  39. Dennison S (2011) Biofuels: biodiversity data. Winrock International. http://ec.europa.eu/energy/renewables/studies/doc/biofuels/2011_biofuels_baseline_2008.pdf
  40. Densmore N (2010) Coarse woody debris backgrounder. Forest and Range Evaluation Program FREP Extension Note #8. http://www.for.gov.bc.ca/ftp/hfp/external/!publish/FREP/extension/FREP_Extension_Note_08.pdf. Accessed Jan 2014
  41. Dias LAS, Missio RF, Dias DCFS (2012) Antiquity, botany, origin and domestication of Jatropha curcas (Euphorbiaceae), a plant species with potential for biodiesel production. Genet Mol Res 11:2719–2728CrossRefGoogle Scholar
  42. DOE (2014) Incorporating bioenergy into sustainable landscape designs. Summary of a workshop held in New Bern, North Carolina, on March 4–6, 2014, organized by the U.S. Department of Energy Bioenergy Technologies Office, Oak Ridge National Laboratory, Argonne National Laboratory, and the National Council for Air and Stream Improvement, Inc. (NCASI). http://web.ornl.gov/sci/ees/cbes/workshops/Landscape%20Design%20Workshop%20Summary%20-%20New%20Bern%20NC%20March%202014.pdf. Accessed 14 July 2014
  43. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proc Natl Acad Sci USA 105:4513–4518CrossRefGoogle Scholar
  44. Efroymson RA, Dale VH, Kline KL, McBride AC, Bielicki JM, Smith RL, Parish ES, Schweizer PE, Shaw DM (2012) Environmental indicators of biofuel sustainability: what about context? Environ Manag 51:291–306CrossRefGoogle Scholar
  45. Embrapa (2010) ZAE Cana (Sugarcane Agricultural Zoning Cana) for 2017 and beyond. EMBRAPA. http://www.cnps.emprapa.br
  46. Endres J, Diaz-Chavez R, Kaffka SR, Pelkmans L, Seabra JEA, Walter A (2015) Sustainability certification In: Souza GM, Victoria RL, Joly CA, Verdade M (eds) Scientific Committee on problems of the environment (SCOPE), bioenergy & sustainability: bridging the gaps. SCOPE 72, Chapter 19. Paris. ISBN: 978-2-9545557-0-6Google Scholar
  47. Engel J, Huth A, Frank K (2012) Bioenergy production and Skylark (Alauda arvensis) population abundance—a modelling approach for the analysis of land-use change impacts and conservation options. Glob Change Biol Bioenerg 4:713–727CrossRefGoogle Scholar
  48. Erb K-H, Haberl H, Plutzar C (2012) Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 47:260–269CrossRefGoogle Scholar
  49. Europa (2014) Promotion of the use of energy from renewable sources. Text of the European Renewable Energy Directive. http://europa.eu/legislation_summaries/energy/renewable_energy/en0009_en.htm
  50. Fahd S, Mellino S, Ulgiati S (2012) Energy cropping in marginal land: viable option or fairy tale? In: Pimental D (ed) Global economic and environmental aspects of biofuels. CRC Press, Taylor & Francis Group, Boca Raton, pp 51–96CrossRefGoogle Scholar
  51. FAO and Joint Research Centre (JRC) (2012) Global forest land-use change 1990–2005, by E.J. Lindquist, R. D’Annunzio, A. Gerrand, K. MacDicken, F. Achard, R. Beuchle, A. Brink, H.D. Eva, P. Mayaux, J. San-Miguel-Ayanz, H-J. Stibig. FAO Forestry Paper No. 169. Food and Agriculture Organization of the United Nations and European Commission Joint Research, Centre. FAO, RomeGoogle Scholar
  52. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1237CrossRefGoogle Scholar
  53. Fargione J, Plevin RJ, Hill JD (2010) The ecological impact of biofuels. Annu Rev Ecol Evol S 41:351–377CrossRefGoogle Scholar
  54. Flaspohler DJ, Webster CR (2011) Plantations for bioenergy: principles for maintaining biodiversity in intensively managed forests. For Sci 57:516–524Google Scholar
  55. Fletcher RJ, Robertson BA, Evans J, Doran PJ, Alavalapati JRR, Schemske DW (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9:161–168CrossRefGoogle Scholar
  56. Food and Agriculture Organization (FAO) (2013) FAOSTAT Online Statistical Service. http://faostat.fao.org
  57. Food and Agriculture Organization (FAO) (2014) State of World’s Forest 2014. Rome. http://www.fao.org/forestry/sofo/en/. Accessed 07 July 2014
  58. Forest Practices Board (2010) Measuring wood waste in British Columbia: complaint investigation 080870. FPB/IRC/170, September 2010. http://www.fpb.gov.bc.ca/WorkArea/DownloadAsset.aspx?id=5499. Accessed Apr 2014
  59. Forest and Range Practices Act (FRPA) (2004). http://www.bclaws.ca/Recon/document/ID/freeside/14_2004. Accessed Jan 2014
  60. Forest and Range Practices Act (FRPA) (2011) Wildlife tree retention: guidance for district and licensee staff. FRPA General Bulletin Number 8. http://www.for.gov.bc.ca/ftp/HTH/external/!publish/web/frpa-admin/frpa-implementation/bulletins/frpa-general-no-8-wildlife-tree-retention-area-dec-2011.pdf. Accessed Jan 2014
  61. Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc Natl Acad Sci USA 108:13864–13869CrossRefGoogle Scholar
  62. Gelfand I, Sahajpal R, Zhang XS, Izaurralde RC, Gross KL, Robertson GP (2013) Sustainable bioenergy production from marginal lands in the US Midwest. Nature 493:514–520CrossRefGoogle Scholar
  63. Gonçalves JLM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manag 301:6–27CrossRefGoogle Scholar
  64. Grimm NB, Chapin FS, Bierwagen B, Gonzalez P, Groffman PM, Luo YQ, Melton F, Nadelhoffer K, Pairis A, Raymond PA, Schimel J, Williamson CE (2013) The impacts of climate change on ecosystem structure and function. Front Ecol Environ 11:474–482CrossRefGoogle Scholar
  65. Groom MJ, Gray EM, Townsend PA (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602–609CrossRefGoogle Scholar
  66. Gutiérrez-Vélez VH, DeFries R, Pinedo-Vásquez M, Uriarte M, Padoch C, Baethgen W, Fernandez K, Lim Y (2011) High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ Res Lett 6:art.044029Google Scholar
  67. Immerzeel DJ, Verweij PA, van der Hilst F, Faaij APC (2014) Biodiversity impacts of bioenergy crop production: a state-of-the-art review. Glob Change Biol Bioenergy 6:183–209CrossRefGoogle Scholar
  68. International Sustainability and Carbon Certification (ISCC) (2011) Sustainability requirements for the production of biomass. ISCC 202, V. 2.3-EU. http://www.iscc-system.org/en/certification-process/isccsystemdocuments/iscc-eu/
  69. Isaacs R, Tuell J, Fiedler A, Gardiner M, Landis D (2009) Maximizing arthropod-mediated ecosystem services in agricultural landscapes: the role of native plants. Front Ecol Environ 7:196–203CrossRefGoogle Scholar
  70. Janowiak MK, Webster CR (2010) Promoting ecological sustainability in woody biomass harvesting. J For 108:16–23Google Scholar
  71. Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39:5717–5725CrossRefGoogle Scholar
  72. Joly CA, Huntley BJ, LM Verdade LM, Dale VH, Mace G, Muok B, Ravindranath NH (2015) Biofuel impacts on biodiversity and ecosystem services. In Souza GM, Joly CA (eds) Scientific Committee on problems of the environment (SCOPE) rapid assessment process on bioenergy and sustainability, Chapter 16. ParisGoogle Scholar
  73. Keisker DG (2000) Types of wildlife trees and coarse woody debris required by wildlife of north-central British Columbia. Res. Br. Min. For. Victoria B.C. Work Paper 50/2000. http://www.for.gov.bc.ca/hfd/pubs/Docs/Wp/Wp50.htm. Accessed Jan 2014
  74. Kissinger G (2013) Starbucks and conservation international case study. Reducing risk: landscape approaches to sustainable sourcing. EcoAgriculture Partners, on behalf of the Landscapes for People, Food and Nature Initiative, Washington, DCGoogle Scholar
  75. Kline KL, Oladosu GA, Wolfe A, Perlack RD, Dale VH, McMahon M (2008) Biofuel feedstock assessment for selected countries. ORNL/TM-2008/026. doi: 10.2172/931159. http://info.ornl.gov/sites/publications/Files/Pub9385.pdf. Accessed Mar 2015
  76. Kline KL, Dale VH, Lee R, Leiby P (2009) In defense of biofuels, done right. Issues Sci Technol 25:75–84Google Scholar
  77. Kline KL, Oladosu GA, Dale VH, McBride AC (2011) Scientific analysis is essential to assess biofuel policy effects: in response to the paper by Kim and Dale on-Indirect land-use change for biofuels: testing predictions and improving analytical methodologies. Biomass Bioenergy 35:4488–4491. doi: 10.1016/j.biombioe.2011.08.011 CrossRefGoogle Scholar
  78. Kretschmer B, Allen B, Tucker G (2013) A framework for land use mapping: mapping appropriate land use and reducing land use change impacts in the context of the Renewable Energy Directive. Institute for European Environmental Policy (IEEP), LondonGoogle Scholar
  79. Kurka T, Blackwood D (2013) Participatory selection of sustainability criteria and indicators for bioenergy developments. Renew Sustain Energy Rev 24:92–102CrossRefGoogle Scholar
  80. Köthke M, Leischner B, Elsasser P (2013) Uniform global deforestation patterns—an empirical analysis. For Policy Econ 28:23–37CrossRefGoogle Scholar
  81. Lamers P, Marchal D, Heinimo J, Steierer F (2013) Woody biomass trade for energy. In: Junginger M, Goh CS, Faaij A (eds) International bioenergy trade: history, status & outlook on securing sustainable bioenergy supply, demand and markets. Springer, Berlin, pp 41–64Google Scholar
  82. Landis DA, Gardiner MM, van der Werf W, Swinton SM (2008) Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes. Proc Natl Acad Sci USA 105:20552–20557CrossRefGoogle Scholar
  83. Langeveld H, Dixon J, van Keulen H (2013) Biofuel cropping systems: carbon, land and food. Routledge Earthscan, Abingdon. ISBN 13: 978-0-415-53953-1Google Scholar
  84. Lankoski J, Ollikainen M (2011) Biofuel policies and the environment: do climate benefits warrant increased production from biofuel feedstocks? Ecol Econ 70:676–687CrossRefGoogle Scholar
  85. Lapola DM, Martinelli LA, Peres CA, Ometto JP, Ferreira ME, Nobre CA, Aguiar APD, Bustamante MMC, Cardoso MF, Costa MH, Joly CA, Leite CC, Moutinho P, Sampaio G, Strassburg BBN, Vieira ICG (2014) Pervasive transition of the Brazilian land-use system. Nat Clim Change 4:27–35CrossRefGoogle Scholar
  86. Leal MRLV, Horta Nogueira LA, Cortez LAB (2013) Land demand for ethanol production. Appl Energy 102:266–271CrossRefGoogle Scholar
  87. Lewis KC, Porter RD (2014) Global approaches to addressing biofuel-related invasive species risks and incorporation into U.S. laws and policies. Ecol Monogr 84:171–201CrossRefGoogle Scholar
  88. Littlefield CE, Keeton WS (2012) Bioenergy harvesting impacts on ecologically important stand structure and habitat characteristics. Ecol Appl 22:1892–1909CrossRefGoogle Scholar
  89. Liu J, Mooney H, Hull V, Davis SJ, Gaskell J, Hertel T, Lubchenco J, Seto KC, Gleick P, Kremen C, Li S (2015) Systems integration for global sustainability. Science 347(6225):963Google Scholar
  90. Lu H, Lin B-L, Campbell DE, Sagisaka M, Ren H (2012) Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan. Energy 46:442–450CrossRefGoogle Scholar
  91. Meehan TD, Hulbert AH, Gratton C (2010) Bird communities in future bioenergy landscapes of the upper Midwest. Proc Natl Acad Sci USA 107:18533–18538CrossRefGoogle Scholar
  92. Meehan TD, Werling BP, Landis DA, Gratton C (2012) Pest-suppression potential of Midwestern landscapes under contrasting bioenergy scenarios. PLoS One 7(7):e41728CrossRefGoogle Scholar
  93. Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DCGoogle Scholar
  94. Ministry of Agriculture and Livestock (MAPA) (2013) Sugarcane production data. www.agricultura.gov.br
  95. Ministry of Forests, Lands and Natural Resource Operations (2011a) Northern interior forest region: analysis of stand-level biodiversity sampling results in six predominant biogeocliamtic subzones. Min. For. Lands Nat. Resour. Oper For Prac Invest Br., Victoria. FREP. http://www.for.gov.bc.ca/hfp/frep/publications/reports.htm. Accessed Jan 2014
  96. Ministry of Forests, Lands and Natural Resource Operations (2011b) Southern interior forest region: analysis of stand-level biodiversity sampling results in six predominant biogeocliamtic subzones. Min. For. Lands Nat. Resour. Oper. For. Prac. Invest. Br., Victoria, B.C. FREP. http://www.for.gov.bc.ca/hfp/frep/publications/reports.htm. Accessed Jan 2014
  97. Ministry of Forests, Lands and Natural Resource Operations (2011c) Coastal forest region: analysis of stand-level biodiversity sampling results in six predominant biogeocliamtic subzones. Min. For. Lands Nat. Resour. Oper. For. Prac. Invest. Br., Victoria, B.C. FREP. http://www.for.gov.bc.ca/hfp/frep/publications/reports.htm. Accessed Jan 2014
  98. Ministry of Forests and Range (2000) A short-term strategy for coarse woody debris management in British Columbia’s Forests. Research Branch. http://www.for.gov.bc.ca/hre/deadwood/DTgui3.htm. Accessed Jan 2014
  99. Mitchell RJ, Duncan SL (2009) Range of variability in southern coastal plain forests: its historical, contemporary, and future role in sustaining biodiversity. Ecol Soc 14(1):17. http://www.ecologyandsociety.org/vol14/iss1/art17/
  100. Mitchell R, Vogel K, Schmer M (2014) Switchgrass (Panicum virgatum) for Biofuel Production. Extension, America’s Research-based learning network. https://www.extension.org/pages/26635/switchgrass-panicum-virgatum-for-biofuel-production#.U_YeHPldWE4. Accessed 18 Aug 2014
  101. Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J For Res 129:981–992CrossRefGoogle Scholar
  102. Myers MC, Hoksch BJ, Mason JT (2012) Butterfly response to floral resources during early establishment at a heterogenous prairie biomass production site in Iowa, USA. J Insect Conserv 16:457–472CrossRefGoogle Scholar
  103. Nackley LL, Lieu BH, Batalla Garcia B, Richardson JJ, Isaac E, Spies K, Rigdon S, Schwartz DT (2013) Bioenergy that supports ecological restoration. Front Ecol Environ 11:535–540CrossRefGoogle Scholar
  104. Nahum JS, Malcher ATC (2012) Dinâmicas territoriais do espaço agrário na Amazônia: a dendeicultura na microrregião de Tomé-Açu (PA). Confins 16:1–16. doi: 10.4000/confins.7947 Google Scholar
  105. National Research Council (NRC) (2011) Renewable fuel standard: potential economic and environmental effects of U.S. biofuel policy. Committee on Economic and Environmental Impacts of Increasing Biofuels Production; National Research Council, National Academies Press, Washington, DCGoogle Scholar
  106. Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A et al (2014) Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344(6188):1118–1123CrossRefGoogle Scholar
  107. Neugarten R, Savy CE (2012) A global review of national guidance for high conservation value. Conservation International & Africa Biodiversity Collaborative Group (ABCG). Funded by the US Agency for International Development (USAID), Washington, DC. http://pdf.usaid.gov/pdf_docs/PA00JW7M.pdf
  108. NL Agency (2010) Jatropha Assessment. Prepared by Utrecht University (Jansk van Eijck et al.) for NL Agency, Ministry of Economic Affairs, Agriculture and Innovation, Netherlands Programmes for Sustainable Biomass. http://english.rvo.nl/sites/default/files/2013/12/Report%20Jatropha%20assessment%20-%20Copernicus%20-%20NPSB.pdf. Accessed Dec 2013
  109. North Carolina State Forest Service (2014) North Carolina’s Emerging Forest threats—management options for healthy forests. http://ncforestservice.gov/Managing_your_forest/pdf/EmergingThreatsHealthyForestMngtOptionsNC.pdf. Accessed 17 Aug 2014
  110. OECD/FAO (2011) OECD-FAO agricultural outlook 2011–2020, chapter 3. http://www.oecd.org/site/oecd-faoagriculturaloutlook/48178823.pdf
  111. Oladosu G, Kline K, Martinez R, Eaton L (2011) Sources of corn for ethanol production in the United States: a review and decomposition analysis of the empirical data. Biofuels Bioprod Bioref 5:640–653CrossRefGoogle Scholar
  112. Oliveira COF (2013) Biodiversity and the certification schemes for biofuels. Masters dissertation presented at University of Campinas. CampinasGoogle Scholar
  113. Parish ES, Hilliard MR, Baskaran LM, Dale VH, Griffiths NA et al (2012) Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels Bioprod Bioref 6:58–72CrossRefGoogle Scholar
  114. Parish ES, Kline KL, Dale VH, Efroymson RA, McBride AC, Johnson TL, Hilliard MR, Bielicki JM (2013) Comparing scales of environmental effects from gasoline and ethanol production. Environ Manag 51:307–338CrossRefGoogle Scholar
  115. Pereira HM, Navarro LM, Martins IS (2012) Global biodiversity change: the bad, the good, and the unknown. Annu Rev Environ Resour 37:25–50CrossRefGoogle Scholar
  116. Pessoas-Jr A, Roberto IC, Menossi M, dos Santos RR, Ortega S, Penna TCV (2005) Perspectives on bioenergy and biotechnology in Brazil. Appl Biochem Biotechnol 121:59–70CrossRefGoogle Scholar
  117. Practical Action Consulting (PAC) (2009) Small-scale bioenergy initiatives: brief description and preliminary lessons on livelihood impacts from case studies in Asia, Latin America and Africa. Prepared for the Food and Agriculture Organization, Policy Innovation Systems for Clean Energy Security (PISCES), Rome. http://www.fao.org/bioenergy/home/en/UTH. Accessed Dec 2013
  118. Proforest (2010) REDD+ co-benefits and the HCV concept. Annex 2. http://www.proforest.net/objects/publications/full-report. Accessed 07 July 2014
  119. Puppim JA, de Oliveira JAP (2002) The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme. Renew Sustain Energy Rev 6(1–2):129–140CrossRefGoogle Scholar
  120. Raghu S, Anderson RC, Daehler CC, David AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313:1742CrossRefGoogle Scholar
  121. Reijnders L (2013) Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels: a literature review. Environ Technol 34:1725–1734CrossRefGoogle Scholar
  122. Renewable Energy Policy Network (REN21) (2014) Renewables 2014 Global Status Report. http://www.ren21.net/portals/0/documents/resources/gsr/2014/gsr2014_full%20report_low%20res.pdf
  123. Renewable Fuel Association (RFA) (2014) Renewable Fuel Association production data. http://www.ethanolrfa.org/pages/statistics. Accessed 07 July 2014
  124. Riffell S, Verschuyl J, Miller D, Wigley TB (2011) Biofuel harvests, coarse woody debris, and biodiversity—a meta-analysis. For Ecol Manag 261:878–887CrossRefGoogle Scholar
  125. Robertson BA, Doran PJ, Loomis RL, Robertson JR, Schemske DW (2010) Perennial biomass feedstocks enhance avian diversity. Glob Change Biol Bioenergy 3:235–246CrossRefGoogle Scholar
  126. Robertson BA, Rice RA, Sillett TS, Ribic CA, Babcock BA, Landis DA, Herkert JR, Fletcher RJ Jr, Fontaine JJ, Doran PJ, Schemske DW (2012) Are agrofuels a conservation threat or opportunity for grassland birds in the United States? Condor 114:679–688CrossRefGoogle Scholar
  127. Robertson BA, Landis DA, Sillett TS, Loomis ER, Rice RA (2013) Perennial agroenergy feedstocks as en route habitat for spring migratory birds. Bioenergy Res 6:311–320CrossRefGoogle Scholar
  128. Roundtable on Sustainable Biomaterials (RSB) (2010) RSB principles & criteria for sustainable biofuel production. RSB-STD-01-001, version 2.0. http://rsb.org/pdfs/standards/11-03-08-RSB-PCs-Version-2.pdf
  129. Roundtable on Sustainable Biomaterials (RSB) (2011) Indicators of compliance for the RSB principles & criteria. http://rsb.org/pdfs/global/11-03-08-RSB-Indicators-2-0.pdf
  130. Roundtable on Sustainable Biomaterials (RSB) (2015) Participating operators. http://rsb.org/certification/participating-operators/
  131. Sala OE, Chapin SS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  132. Scarlat N, Dallemand JF (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Policy 39:1630–1646CrossRefGoogle Scholar
  133. Schloss CA, Nunez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Natl Acad Sci USA 109:8606–8611CrossRefGoogle Scholar
  134. Searchinger T, Heimlich R, Houghton RA, Fengxia D, Elobeid A, Gabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRefGoogle Scholar
  135. Siitonen J, Martikainen P, Punttila P, Rauh J (2000) Coarse woody debris and stand characteristics in mature managed and old-growth boreal mesic forests in southern Finland. For Ecol Manag 128:211–225CrossRefGoogle Scholar
  136. Souza GM, Victoria RL, Joly CA and Verdade M, editors (2015) Scientific Committee on Problems of the Environment (SCOPE) Report: Bioenergy & Sustainability: bridging the gaps. SCOPE 72. Paris, France and Sao Paulo, Brazil. ISBN: 978-2-9545557-0-6Google Scholar
  137. Sparovek G, Barretto A, Berndes G, Martins S, Maule R (2009) Environmental, land-use and economic implications of Brazilian sugarcane expansion 1996–2006. Mitig Adapt Strat Glob Change 14:285–298CrossRefGoogle Scholar
  138. Spelter H, Toth D (2009) North America’s wood pellet sector. USDA Forest Service, Forest Products Laboratory, Research Paper FPL-RP-656, MadisonGoogle Scholar
  139. Stanley DA, Stout JC (2013) Quantifying the impacts of bioenergy crops on pollinating insect abundance and diversity: a field-scale evaluation reveals taxon-specific responses. J Appl Ecol 50:335–344CrossRefGoogle Scholar
  140. Staudinger MD, Carter SL, Cross MS, Dubois NS, Duffy JE, Enquist C, Griffis R, Hellmann JJ, Lawler JJ, O’Leary J, Morrison SA, Sneddon L, Stein BA, Thompson LM, Turner W (2013) Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Front Ecol Environ 11:465–473CrossRefGoogle Scholar
  141. Stennes B, McBeath A (2006) Bioenergy options for woody feedstock: are trees killed by mountain pine beetle in British Columbia a viable bioenergy resource? Natural Resources Canada, Pacific Forestry Centre Information Report BC-X-405. http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/26537.pdf
  142. Stockland JN, Siitonen J, Jonsson BG (2012) Biodiversity in dead wood. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  143. Stoms DM, Davis FW, Jenner MW, Nogeire TM, Kaffka SR (2012) Modeling wildlife and other trade-offs with biofuel crop production. Glob Change Biol Bioenergy 4:330–341CrossRefGoogle Scholar
  144. Taubert F, Frank K, Huth A (2012) A review of grassland models in the biofuel context. Ecol Model 245:84–93CrossRefGoogle Scholar
  145. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high diversity grassland biomass. Science 314:1598–1600CrossRefGoogle Scholar
  146. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy and environment trilemma. Science 325:270–271CrossRefGoogle Scholar
  147. Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59CrossRefGoogle Scholar
  148. UDOP (2015) Brazil Bioenergy Producers Union, Table: Análise Comparativa do Desempenho das Safras 2014/2015 e 2013/2014. http://www.udop.com.br/. Dados Acumulados 22 Apr 2015
  149. United Kingdom (UK) (2014) The Government of the United Kingdom, Department of Energy & Climate Change. Press release: biomass calculator launched. https://www.gov.uk/government/news/biomass-calculator-launched. Accessed 18 Aug
  150. United Nations Environment Programme (2010) State of Biodiversity in Latin America and the Caribbean. UNEP Regional Office for Latin America and the Caribbean (ROLAC), Ciudad de Panamá. http://www.cbd.int/gbo/gbo3/doc/StateOfBiodiversity-LatinAmerica.pdf
  151. US Department of Agriculture Economic Research Service (USDA ERS) (2014) United States Department of Agriculture Economic Research Service, Agriculture baseline database. http://www.ers.usda.gov/data-products/. Accessed 07 July
  152. US Energy Information Administration (EIA) (2014) United States Energy Information Administration, Monthly Energy Review July 2014. http://www.eia.gov/totalenergy/data/monthly/pdf/sec10_7.pdf. Accessed 14 July 2014
  153. US Environmental Protection Agency (US EPA) (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. Contract No.: EPA-420-R-10-006. US Environmental Protection Agency, Washington, DCGoogle Scholar
  154. U.S. Environmental Protection Agency (US EPA) (2014) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2012. EPA-430-R-14-003 (April 2014). US Environmental Protection Agency, Washington, DCGoogle Scholar
  155. USDA Forest Service (2012) Future of America’s Forest and Rangelands: Forest Service 2010 Resources Planning Act Assessment. Gen. Tech. Rep. WO-87. USDA Forest Service, Washington, DCGoogle Scholar
  156. USDA National Resources Conservation Service (NRCS) (2014) Landscape initiatives—conservation beyond boundaries. http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/initiatives/. Accessed 18 Aug 2014
  157. Van Dam J (2010), Background document for IEA Bioenergy Task 40. Global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning (full 330 page report; short version published in Journal of Renewable and Sustainable Energy Reviews). http://www.bioenergytrade.org/downloads/overviewcertificationsystemsfinalapril2010.pdf. Accessed Mar 2015
  158. Victorsson J, Jonsell M (2013) Ecological traps and habitat loss, stump extraction and its effects on saproxylic beetles. For Ecol Manag 290:22–29CrossRefGoogle Scholar
  159. Villela A, D’Alembert BJ, Rosa LP, Freitas MV (2014) Status and prospects of oil palm in the Brazilian Amazon. Biomass Bioenergy 67:270–278CrossRefGoogle Scholar
  160. Voegele E (2014) U.K. DECC model confirms GHG benefits of North American pellets. Biomass Magazine (July 24, 2014). http://www.theusipa.org/wood-pellet-periodical. Accessed 18 Aug 2014
  161. Wear DN, Greis JG (2012) The Southern Forest Futures Project: summary report. Gen. Tech. Rep. SRS-GTR-168. USDA-Forest Service, Southern Research Station, AshevilleGoogle Scholar
  162. Webster CR, Flaspohler DJ, Jackson RD, Meehan TD, Gratton C (2010) Diversity, productivity and landscape-level effects in North American grasslands managed for biomass production. Biofuels 1:451–461CrossRefGoogle Scholar
  163. Werling BP, Meehan TD, Gratton C, Landis DA (2011) Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops. Biol Control 59:304–312CrossRefGoogle Scholar
  164. Werling BP, Dickson TL, Isaacs R, Gaines H, Gratton C, Gross KL, Liere H, Malmstrom CM, Meehan TD, Ruan LL, Robertson BA, Robertson GP, Schmidt TM, Schrotenboer AC, Teal TK, Wilson JK, Landis DA (2014) Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc Natl Acad Sci USA 111:1652–1657CrossRefGoogle Scholar
  165. Wiens J, Fargione J, Hill J (2011) Biofuels and biodiversity. Ecol Appl 21:1085–1095CrossRefGoogle Scholar
  166. Wilkinson J, Herrera S (2010) Biofuels in Brazil: debates and impacts. J Peasant Stud 37:749–768CrossRefGoogle Scholar
  167. Williams PRD, Inman D, Aden A, Heath GA (2009) Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know? Environ Sci Technol 43:4763–4775CrossRefGoogle Scholar
  168. Witt ABR (2010) Biofuels and invasive species from an African perspective—a review. Glob Change Biol Bioenergy 2:321–329CrossRefGoogle Scholar
  169. Wood Pellet Association of Canada (WPAC) (2013a) Wood Pellet Association of Canada website. http://www.pellet.org/production/production. Accessed Jan 2014
  170. Wood Pellet Association of Canada (WPAC) (2013b) British Columbia’s Wood pellets sustainability fact sheet. http://www.canadianbiomassmagazine.ca/images/BC-biomass.pdf. Accessed Jan 2014
  171. Wood Resources International LLC (2014) North American wood pellet exports to Europe double in 2 years. Biomass Magazine, 24 April 2014. http://biomassmagazine.com/articles/10311/north-american-wood-pellet-exports-to-europe-double-in-2-years
  172. Woods J, Lynd LR, Laser M, Batistella M, de Castro D, Kline KL, Faaij A (2015) Land and bioenergy. In: Souza GM, Victoria RL, Joly CA, Verdade M (eds) Scientific Committee on Problems of the Environment (SCOPE), Bioenergy & sustainability: bridging the gaps, Chapter 9. SCOPE 72, Paris. ISBN: 978-2-9545557-0-6Google Scholar
  173. Work TT, Hibbert A (2011) Estimating species loss of saproxylic insects under scenarios of reduced coarse woody material in eastern boreal forests. Ecosphere 2:art41Google Scholar
  174. Work TT, Shorthouse DP, Spence JR, Volney WJA, Langor D (2004) Stand composition and structure of the boreal mixedwood and epigaeic arthropods of the ecosystem management emulating natural disturbance (EMEND) landbase in northwestern Alberta. Can J For Res 34:417–430CrossRefGoogle Scholar
  175. Work TT, Jacobs JM et al (2010) High levels of green-tree retention are required to preserve ground beetle biodiversity in boreal mixedwood forests. Ecol Appl 20:741–751CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Keith L. Kline
    • 1
  • Fernanda Silva Martinelli
    • 2
  • Audrey L. Mayer
    • 3
  • Rodrigo Medeiros
    • 4
  • Camila Ortolan F. Oliveira
    • 5
  • Gerd Sparovek
    • 6
  • Arnaldo Walter
    • 5
  • Lisa A. Venier
    • 7
  1. 1.Center for BioEnergy Sustainability, Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  2. 2.Sustainable Development Practices Graduate Program, UFRRJ/Conservation International BrasilSeropédicaBrazil
  3. 3.School of Forest Resources and Environmental Science and Department of Social SciencesMichigan Technological UniversityHoughtonUSA
  4. 4.Conservation International Brazil and Department of Environmental SciencesFederal Rural University of Rio de JaneiroRio de JaneiroBrazil
  5. 5.University of Campinas (Unicamp)CampinasBrazil
  6. 6.University of São Paulo, USPPiracicabaBrazil
  7. 7.Canadian Forest Service, Great Lakes Forestry CentreSault Ste. MarieCanada

Personalised recommendations