Environmental Management

, Volume 56, Issue 5, pp 1170–1183 | Cite as

Using the Viability Theory to Assess the Flexibility of Forest Managers Under Ecological Intensification

  • Jean-Denis MathiasEmail author
  • Bruno Bonté
  • Thomas Cordonnier
  • Francis de Morogues


Greater demand for wood material has converged with greater demand for biodiversity conservation to make balancing forest ecosystem services a key societal issue. Forest managers, owners, or policymakers need new approaches and methods to evaluate their ability to adapt to this dual objective. We analyze the ability of forest owners to define sustainable forest management options based on viability theory and a new flexibility index. This new indicator gauges the adaptive capacity of forest owners based on the number of sustainable actions available to them at a given time. Here we study a public forest owner who regulates harvest intensity and frequency in order to meet demand for timber wood at forest scale and to meet a biodiversity recommendation via a minimum permanently maintained volume of deadwood per hectare at stand scale. Dynamical systems theory was used to model uneven-aged forest dynamics—including deadwood dynamics—and the dynamics of timber wood demand and tree removals. Uneven-aged silver fir forest management in the “Quatre Montagnes region” (Vercors, France) is used as an illustrative example. The results explain situations where a joint increase in wood production and deadwood retention does not reduce the flexibility index more than increasing either one dimension alone, thus opening up ecological intensification options. To conclude, we discuss the value of the new flexibility index for addressing environmental management and ecological intensification issues.


Flexibility Management Forest modeling Wood production Biodiversity Viability theory 



This research was partly financed by the French National Research Agency via a grant under the FORGECO Project (ANR-09-STRA-02-01).


  1. Abt K, Abt R, Galik C (2012) Effect of bioenergy demands and supply response on markets, carbon, and land use. For Sci 58:523–539Google Scholar
  2. Aubin J (1991) Viability theory. Systems & Control, BirkhäuserGoogle Scholar
  3. Bouget C, Lassauce A, Jonsell M (2012) Effects of fuelwood harvesting on biodiversity—a review focused on the situation in Europe. Can J For Res 42:1421–1432CrossRefGoogle Scholar
  4. Carpenter S, Mooney H, Agard J, Capistrano D, Defries R, Diaz S, Dietz T, Duraiappah A, Oteng-Yeboah A, Pereira H, Perrings C, Reid W, Sarukhan J, Scholes R, Whyte A (2009) Science for managing ecosystem services: beyond the millennium ecosystem assessment. Proc Natl Acad Sci USA 106:1305–1312CrossRefGoogle Scholar
  5. Csilléry K, Seignobosc M, Lafond V, Kunstler G, Courbaud B (2013) Estimating long-term tree mortality rate time series by combining data from periodic inventories and harvest reports in a bayesian state-space model. For Ecol Manage 292:64–74CrossRefGoogle Scholar
  6. Cubbage F, Harou P, Sills E (2007) Policy instruments to enhance multi-functional forest management. For Policy Econ 9:833–851CrossRefGoogle Scholar
  7. Cury P, Mullon C, Garcia S, Shannon L (2005) Viability theory for an ecosystem approach to fisheries. ICES J Mar Sci 62:577–584CrossRefGoogle Scholar
  8. Deuffic P, Lyser S (2012) Biodiversity or bioenergy: is deadwood conservation an environmental issue for french forest owners? Can J For Res 42:1491–1502CrossRefGoogle Scholar
  9. Doré T, Makowski D, Malézieux E, Munier-Jolain N, Tchamitchian M, Tittonell P (2011) Facing up to the paradigm of ecological intensification in agronomy: revisiting methods, concepts and knowledge. Eur J Agron 34:197–210CrossRefGoogle Scholar
  10. Gunderson L (1999) Resilience, flexibility and adaptive management—antidotes for spurious certitude? Conserv Ecol 3:XXIII–XXIVGoogle Scholar
  11. Gustafsson L, Baker S, Bauhus J, Beese W, Brodie A, Kouki J, Lindenmayer D, Lhmus A, Pastur G, Messier C, Neyland M, Palik B, Sverdrup-Thygeson A, Volney W, Wayne A, Franklin J (2012) Retention forestry to maintain multifunctional forests: a world perspective. Bioscience 62:633–645CrossRefGoogle Scholar
  12. Holling C (1978) Adaptive environmental assessment and management. Wiley, LondonGoogle Scholar
  13. Huang I, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409:3578–3594CrossRefGoogle Scholar
  14. Johnson B (1999) The role of adaptive management as an operational approach for resource management agencies. Conserv Ecol 3:xix–xxGoogle Scholar
  15. Kohyama T, Takada T (2009) The stratification theory for plant coexistence promoted by one-sided competition. J Ecol 97:463–471CrossRefGoogle Scholar
  16. Kohyama T, Takada T (2012) One-sided competition for light promotes coexistence of forest trees that share the same adult height. J Ecol 100:1501–1511CrossRefGoogle Scholar
  17. Kunstler G, Albert C, Courbaud B, Lavergne S, Thuiller W, Vieilledent G, Zimmermann N, Coomes D (2011) Effects of competition on tree radial-growth vary in importance but not in intensity along climatic gradients. J Ecol 99:300–312CrossRefGoogle Scholar
  18. Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Ann For Sci 71:173–186CrossRefGoogle Scholar
  19. Lardon S, Bouchaud M, Cordonnier T (2015) Forêts et foresterie: savoirs et motivations. Chapter Combiner modèles forestiers et participation des acteurs pour une gouvernance intégrée de la forêt dans le territoire Le jeu de territoire Vercors. In: Farcy C, Huybens N (eds) (in press)Google Scholar
  20. Lassauce A, Paillet Y, Jactel H, Bouget C (2011) Deadwood as a surrogate for forest biodiversity: meta-analysis of correlations between deadwood volume and species richness of saproxylic organisms. Ecol Ind 11:1027–1039CrossRefGoogle Scholar
  21. Lindenmayer D, Margules C, Botkin D (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950CrossRefGoogle Scholar
  22. Lohmus A, Kraut A, Rosenvald R (2013) Dead wood in clearcuts of semi-natural forests in estonia: site-type variation, degradation, and the influences of tree retention and slash harvest. Eur J Forest Res 132:335–349CrossRefGoogle Scholar
  23. Longuetaud F, Santenoise F, Mothe F, Senga Kiessé T, Rivoire M, Saint-André L, Ognouabi N, Deleuze C (2013) Modeling volume expansion factors for temperate tree species in France. For Ecol Manage 292:111–121CrossRefGoogle Scholar
  24. Lu F, Gong P (2003) Optimal stocking level and final harvest age with stochastic prices. J For Econ 9:119–136Google Scholar
  25. Mantau U, Saal U, Verkerk H, Eggers J, Lindner M, Anttila P, Asikainen A, Oldenburger J, Leek N, Steierer F, Prins K, Jonsson R (2010) Will there be enough wood (for all)? EFI News 18:10–11Google Scholar
  26. Müller J, Bütler R (2010) A review of habitat thresholds for dead wood: a baseline for management recommendations in European forests. Eur J Forest Res 129:981–992CrossRefGoogle Scholar
  27. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325:419–422CrossRefGoogle Scholar
  28. Redon M, Luque S, Gosselin F, Cordonnier T (2014) Is generalisation of uneven-aged management in mountain forests the key to improve biodiversity conservation within forest landscape mosaics? Ann For Sci 71:751–760CrossRefGoogle Scholar
  29. Rougé C, Mathias JD, Deffuant G (2013) Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication. Ecol Ind 29:420–433CrossRefGoogle Scholar
  30. Rougé C, Mathias JD, Deffuant G (2014) Relevance of control theory to design and maintenance problems in time-variant reliability: the case of stochastic viability. Reliab Eng Syst Saf 132:250–260CrossRefGoogle Scholar
  31. Sabatier R, Doyen L, Tichit M (2012) Action versus result-oriented schemes in a grassland agroecosystem: a dynamic modelling approach. PLoS One 7:e33257CrossRefGoogle Scholar
  32. Sabatier R, Oates LG, Brink GE, Bleier J, Jackson RD (2015) Grazing in an uncertain environment: modeling the trade-off between production and robustness. Agron J 107:257–264CrossRefGoogle Scholar
  33. Saint-Pierre P (1994) Approximation of the viability kernel. Appl Math Optim 29:187–209CrossRefGoogle Scholar
  34. Scott R, Mitchell S (2005) Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. For Ecol Manage 218:193–209CrossRefGoogle Scholar
  35. Seidl R, Lexer M (2013) Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity. J Environ Manage 114:461–469CrossRefGoogle Scholar
  36. Tichit M, Doyen L, Lemel J, Renault O, Durant D (2007) A co-viability model of grazing and bird community management in farmland. Ecol Model 206:277–293CrossRefGoogle Scholar
  37. Vallet P, Dhôte JF, Moguédec G, Ravart M, Pignard G (2006) Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manage 229:98–110CrossRefGoogle Scholar
  38. Vieilledent G (2009) Structuring uncertainty and variability of ecological processes in forest dynamics models. Application to silver Fir and Norway Spruce coexistence. Ph.D. thesis. Cemagref-AgroParisTechGoogle Scholar
  39. Vieilledent G, Courbaud B, Kunstler G, Dhôte JF (2010a) Mortality of silver fir and norway spruce in the western alps—a semi-parametric approach combining size-dependent and growth-dependent mortality. Ann For Sci 67(3):305 CrossRefGoogle Scholar
  40. Vieilledent G, Courbaud B, Kunstler G, Dhôte JF, Clark J (2010b) Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical bayesian approach. Oecologia 163:759–773CrossRefGoogle Scholar
  41. Walters C (1986) Adaptive management of renewable resources. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jean-Denis Mathias
    • 1
    Email author
  • Bruno Bonté
    • 1
    • 2
  • Thomas Cordonnier
    • 3
    • 4
  • Francis de Morogues
    • 5
  1. 1.UR LISC, Laboratoire d’Ingénierie pour les Systèmes ComplexesIRSTEAAubièreFrance
  2. 2.UMR G-EAU Gestion de l’eau, acteurs et usagesIRSTEAMontpellier Cedex 5France
  3. 3.UR EMGR, Unité de recherche Ecosystèmes montagnardsIRSTEA, Domaine universitaireSt-Martin-d’Hères CedexFrance
  4. 4.Université Grenoble AlpesGrenobleFrance
  5. 5.FCBADomaine UniversitaireGrenoble Cedex 9France

Personalised recommendations