Environmental Management

, Volume 56, Issue 6, pp 1356–1376 | Cite as

A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region

  • David R. ShonnardEmail author
  • Bethany Klemetsrud
  • Julio Sacramento-Rivero
  • Freddy Navarro-Pineda
  • Jorge Hilbert
  • Robert Handler
  • Nydia Suppen
  • Richard P. Donovan


Life-cycle assessment (LCA) has been applied to many biofuel and bioenergy systems to determine potential environmental impacts, but the conclusions have varied. Different methodologies and processes for conducting LCA of biofuels make the results difficult to compare, in-turn making it difficult to make the best possible and informed decision. Of particular importance are the wide variability in country-specific conditions, modeling assumptions, data quality, chosen impact categories and indicators, scale of production, system boundaries, and co-product allocation. This study has a double purpose: conducting a critical evaluation comparing environmental LCA of biofuels from several conversion pathways and in several countries in the Pan American region using both qualitative and quantitative analyses, and making recommendations for harmonization with respect to biofuel LCA study features, such as study assumptions, inventory data, impact indicators, and reporting practices. The environmental management implications are discussed within the context of different national and international regulatory environments using a case study. The results from this study highlight LCA methodology choices that cause high variability in results and limit comparability among different studies, even among the same biofuel pathway, and recommendations are provided for improvement.


Life-cycle assessment Biofuels Bioenergy Sustainability Pan American region 





Hydro-renewable jet fuel


Daily Century


Direct land-use change


ERG Biofuel Analysis Meta-Model


Environmental Protection Agency




European Union-Renewable Energy Directive


Greenhouse gases


Greenhouse gases, regulated emissions, and energy use in transportation


Global warming potential


Intergovernmental Panel on Climate Change


International Sustainability & Carbon Certification


Life-cycle assessment


Life-cycle inventory


Life-cycle impact assessment


Roundtable on sustainable biomaterials


United States-Renewable Fuel Standard



This material is based upon work supported in part by the U.S. National Science Foundation Grant CBET-1140152“RCN-SEES: A Research Coordination Network on Pan American Biofuels and Bioenergy Sustainability.” We would like to thank the U.S. National Science Foundation for partial support in writing this paper under Award Number 1105039, “OISE-PIRE Sustainability, Ecosystem Services, and Bioenergy Development Across the Americas.” The article benefited greatly from the comments of three anonymous reviewers.

Supplementary material

267_2015_543_MOESM1_ESM.docx (183 kb)
Supplementary material 1 (DOCX 183 kb)


  1. Adom F, Maes A, Workman C, Clayton-Nierderman Z, Thoma G, Shonnard D (2012) Regional carbon footprint of dairy feed rations for milk production in the United States. Int J Life Cycle Assess 17:520–534CrossRefGoogle Scholar
  2. Agusdinata DB, Zhao F, Ileleji K, DeLaurentis D (2011) Life cycle assessment of potential biojet fuel production in the United States. Environ Sci Technol 45:9133–9143. doi: 10.1021/es202148g CrossRefGoogle Scholar
  3. Allen DT et al (2009) Framework and Guidance for Estimating Greenhouse Gas Footprints of Aviation Fuels.
  4. Allen DT, Shonnard DR (2002) Green engineering: environmentally conscious design of chemical processes. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  5. Amores MJ, Mele FD, Jimenez L, Castells F (2013) Life cycle assessment of fuel ethanol from sugarcane in Argentina. Int J Life Cycle Assess 18:1344–1357. doi: 10.1007/s11367-013-0584-2 CrossRefGoogle Scholar
  6. ANL (2014) GREET1_2013 Model. Transportation Technology R&D Center, ArgonneGoogle Scholar
  7. Bailis RE, Baka JE (2010) Greenhouse gas emissions and land use change from Jatropha curcas-based jet fuel in Brazil. Environ Sci Technol 44:8684–8691. doi: 10.1021/es1019178 CrossRefGoogle Scholar
  8. Bailis R, Kavlak G (2013) Environmental implications of Jatropha biofuel from a Silvi-Pastoral production system in Central-West Brazil. Environ Sci Technol 47:8042–8050. doi: 10.1021/es303954g CrossRefGoogle Scholar
  9. Bare J, Thomas G, Norris G (2006) Development of the method and U.S Normalization database for life cycle impact assessment and sustainability metrics. Environ Sci Technol 40:5108–5115. doi: 10.1021/es052494b CrossRefGoogle Scholar
  10. BEFSCI (2011) A compilation of bioenergy sustainability initiatives overview, vol 2013Google Scholar
  11. Bruinsma B (2009) Producción de biodiesel de palma aceitera y jatropha en la Amazona del Peru y el impacto para la sostenibilidad. Open Universiteit NederlandGoogle Scholar
  12. Castanheira EG, Freire FM (2011) Environmental performance of palm oil biodiesel—a life cycle persepctive. In: IEEE international symposium on sustainable systems and technology (ISSST), pp 1–6. doi:  10.1109/ISSST.2011.5936843
  13. Cavalett O, Chagas MF, Seabra JEA, Bonomi A (2013) Comparative LCA of ethanol versus gasoline in Brazil using different LCIA methods. Int J Life Cycle Assess 18:647–658. doi: 10.1007/s11367-012-0465-0 CrossRefGoogle Scholar
  14. CFR (2010) Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard ProgramGoogle Scholar
  15. Chavez-Rodriguez MF, Nebra SA (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44:9252–9257. doi: 10.1021/es101187h CrossRefGoogle Scholar
  16. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451CrossRefGoogle Scholar
  17. Cherubini F, Bird ND, Cowie A, Jungmeier G, Schlamadinger B, Woess-Gallasch S (2009) Energy-and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recycl 53:434–447CrossRefGoogle Scholar
  18. Chiu YW, Suh S, Pfister S, Hellweg S, Koehler A (2012) Measuring ecological impact of water consumption by bioethanol using life cycle impact assessment. Int J Life Cycle Assess 17:16–24. doi: 10.1007/s11367-011-0328-0 CrossRefGoogle Scholar
  19. Chiu YW, Walseth B, Suh S (2009) Water embodied in bioethanol in the United States. Environ Sci Technol 43:2688–2692CrossRefGoogle Scholar
  20. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819. doi: 10.1021/es902838n CrossRefGoogle Scholar
  21. Cleary J (2009) Life cycle assessments of municipal solid waste management systems: a comparative analysis of selected peer-reviewed literature. Environ Int 35:1256–1266. doi: 10.1016/j.envint.2009.07.009 CrossRefGoogle Scholar
  22. Consorcio CUE (2012) Evaluacion del ciclo de vida de la cadena de produccion de biocombustibles en Colombia vol ATN/JC-10826-CO y ATN/JF-10827-CO. MedellinGoogle Scholar
  23. da Costa RE, Yanez E, Torres EA (2006) The energy balance in the production of palm oil biodiesel—two case studies: Brazil and Colombia, pp 1–5Google Scholar
  24. de Souza S, Pereira S, Pacca S, Turra de Avila M, Borges JLB (2010) Greenhouse gas emissions and energy balance of palm oil biofuel. Renew Energy 35:2552–2561. doi: 10.1016/j.renene.2010.03.028 CrossRefGoogle Scholar
  25. Diaz-Chavez R (2014) Indicators for socio-economics sustainability assessment. Springer, SwitzerlandCrossRefGoogle Scholar
  26. Ecoinvent 3 Database (2014)
  27. Emmenegger FM, Pfister S, Koehler A, Giovanetti L, Arena AP, Zah R (2011) Taking into account water use impacts in the LCA of biofuels: an Argentinean case study. Int J Life Cycle Assess 16:869–877. doi: 10.1007/s11367-011-0327-1 CrossRefGoogle Scholar
  28. EPA (2010) Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis, U.S. Environmental Protection Agency, Office of Transportation and Air Quality, Washington, DCGoogle Scholar
  29. FACT (2010) The Jatropha handbook: from cultivation to applications FACT foundation http://www.fact-foundationcom/en/Knowledge_and_Expertise/Handbooks
  30. Fan J, Handler RM, Shonnard DR, Kalnes TN (2012) A review of life cycle greenhouse gas emissions of hydroprocessed jet fuels from renewable oil and fats. Int J Environ Sci Eng Res (IJESER) 3:114–138Google Scholar
  31. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefGoogle Scholar
  32. Galbusera S, Hilbert JA (2011) Analisis de emisiones de gases de efecto invernadero de la produccion agricola extensiva y estudio de la “huella de carbono” de los productos derivados de la soja en la Republica de Argentina. INTA, ArgentinaGoogle Scholar
  33. Garcia CA, Fuentes A, Hennecke A, Riegelhaupt E, Manzini F, Masera O (2011) Life-cycle greenhouse gas emissions and energy balances of sugarcane ethanol production in Mexico. Appl Energy 88:2088–2097. doi: 10.1016/j.apenergy.2010.12.072 CrossRefGoogle Scholar
  34. Graefe S et al (2011) Energy and carbon footprints of ethanol production using banana and cooking banana discard: a case study from Costa Rica and Ecuador. Biomass Bioenergy 35:2640–2649. doi: 10.1016/j.biombioe.2011.02.051 CrossRefGoogle Scholar
  35. Hilbert JA, Galbusera S (2011) Analisis de emisiones produccion de biodiesel—AG-Energy. Instituto Nacional de Tecnologia AgropecuariaGoogle Scholar
  36. Hilbert JA, Galligani S (2014) Argentina. Springer, New YorkCrossRefGoogle Scholar
  37. Huo H, Wang M, Bloyd C, Putsche V (2008) Life-cycle assessment of energy and greenhouse gas effects of soybean-derived biodiesel and renewable fuels. Environ Sci Technol 43:750–756CrossRefGoogle Scholar
  38. IPCC (2006a) Chapter 2: generic methodologies applicable to multiple land-use categories. In: Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Lasco RD, Martino DL, McConkey BG, Ogle S, Paustian K, Raison J, Ravindranath NH, Smith P, Somogyi Z, Amstel AV, Verchot L (eds) IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry, and other land useGoogle Scholar
  39. IPCC (2006b) Chapter 5: cropland. IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry, and other land useGoogle Scholar
  40. IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, CambridgeGoogle Scholar
  41. Iriarte A, Villalobos P (2013) Greenhouse gas emissions and energy balance of sunflower biodiesel: identification of its key factors in the supply chain Resources. Conserv Recycl 73:46–52. doi: 10.1016/j.resconrec.2013.01.014 CrossRefGoogle Scholar
  42. Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18:336–345. doi: 10.1016/j.jclepro.2009.11.004 CrossRefGoogle Scholar
  43. Iriarte A, Rieradevall J, Gabarrell X (2012) Transition towards a more environmentally sustainable biodiesel in South America: the case of Chile. Appl Energy 91:263–273. doi: 10.1016/j.apenergy.2011.09.024 CrossRefGoogle Scholar
  44. ISO 14040 (1997) Environmental Management–Life Cycle Assessment—Principles and FrameworkGoogle Scholar
  45. ISO 14040 (2006) Environmental Management—Life Cycle assessment—Principles and FrameworkGoogle Scholar
  46. ISO 14041 (1998) Environmental management—Life Cycle Assessment—Life Cycle InterpretationGoogle Scholar
  47. ISO 14042 (1998) Life Cycle Assessment—Impact AssessmentGoogle Scholar
  48. ISO 14043 (1998) Environmental Management—Life Cycle Assessment—Life Cycle InterpretationGoogle Scholar
  49. ISO 14044 (2006) Environmental Management—Life Cycle Assessment—Requirements and GuidelinesGoogle Scholar
  50. Kim S, Dale BE (2005) Environmental aspects of ethanol derived from no-tilled corn grain: nonrenewable energy consumption and greenhouse gas emissions. Biomass Bioenergy 28:475–489. doi: 10.1016/j.biombioe.2004.11.005 CrossRefGoogle Scholar
  51. Kim S, Dale BE (2009) Regional variations in greenhouse gas emissions of biobased products in the United States—corn-based ethanol and soybean oil. Int J Life Cycle Assess 14:540–546. doi: 10.1007/s11367-009-0106-4 CrossRefGoogle Scholar
  52. Koch S (2003) LCA of biodiesel in Costa Rica: an environmental study on the manufacturing and use of palm oil methyl ester. San JoseGoogle Scholar
  53. Krohn BJ, Fripp M (2012) A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA. Appl Energy 92:92–98. doi: 10.1016/j.apenergy.2011.10.025 CrossRefGoogle Scholar
  54. Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10:109–126CrossRefGoogle Scholar
  55. Liska AJ, Yang HS, Bremer VR, Klopfenstein TJ, Walters DT, Erickson GE, Cassman KG (2009) Improvements in life cycle energy efficiency and greenhouse gas emissions of corn-ethanol. J Indus Ecol 13:58–74. doi: 10.1111/j.1530-9290.2008.00105.x CrossRefGoogle Scholar
  56. Luo L, van der Voet E, Huppes G, Udo de Haes HA (2009) Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. Int J Life Cycle Assess 14:529–539. doi: 10.1007/s11367-009-0112-6 CrossRefGoogle Scholar
  57. Mishra GS, Yeh S (2011) Life cycle water consumption and withdrawal requirements of ethanol from corn grain and residues. Environ Sci Technol 45:4563–4569. doi: 10.1021/es104145m CrossRefGoogle Scholar
  58. Moser C, Hildebrandt T, Bailis R (2014) International sustainability standards and certification. Sustainable development of biofuels in Latin America and the Caribbean. Springer, New YorkGoogle Scholar
  59. Muench S, Guenther E (2013) A systematic review of bioenergy life cycle assessments. Appl Energy 112:257–273CrossRefGoogle Scholar
  60. Neupane B, Halog A, Dhungel S (2011) Attributional life cycle assessment of woodchips for bioethanol production. J Clean Prod 19:733–741. doi: 10.1016/j.jclepro.2010.12.002 CrossRefGoogle Scholar
  61. NREL (2014) U.S. Life Cycle Inventory Database, National Renewable Energy LaboratoryGoogle Scholar
  62. OECD (2014) Chapter 2 Biofuels. doi: 10.1787/888932861168
  63. Ometto AR, Hauschild MZ, Nelson Lopes RW (2009) Lifecycle assessment of fuel ethanol from sugarcane in Brazil. Int J Life Cycle Assess 14:236–247. doi: 10.1007/s11367-009-0065-9 CrossRefGoogle Scholar
  64. Pradhan A, Shrestha DS, McAloon A, Yee W, Hass M, Duffield JA (2011) Energy life-cycle assessment of soybean biodiesel revisited. Am Soc Agric Biol Eng 5:1031–1039Google Scholar
  65. PRé Consultants (2011) SimaPro 7.2.
  66. RED (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC vol 2013Google Scholar
  67. RED (2012) Directive of the European Parliament and the Council amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sourcesGoogle Scholar
  68. RSB (2011) Indicadores de cumplimiento de los principios y criterios de la RSB, vol 2013Google Scholar
  69. SAIC (2006) Life Cycle Assessment: Principles and Practice, report to U.S. Environmental Protection Agency Google Scholar
  70. Scown CD, Nazaroff WW, Mishra U, Strogen B, Lobscheid AB, Masanet E, Santero NJ, Horvath A, McKone TE (2012) Corrigendum: lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:019502CrossRefGoogle Scholar
  71. Searchinger T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRefGoogle Scholar
  72. SETAC (1991) A technical framework for life cycle assessmentGoogle Scholar
  73. SETAC (1993) Guidelines for life cycle assessment: a ‘code of practice’. In: Consoli F, Allen, D, Boustead I, Fava J, Franklin W, Jensen AA, Oude N, Parrish R, Perriman R, Postlethwaite D, Quay B, Seguin J, Vigon B. (ed). SETAC, BrusselsGoogle Scholar
  74. Shonnard DR, Campbell MB, Martin-Garcia AR, Kalnes TK (2012) Chemical engineering of bioenergy plants: concepts and strategies. Handbook of bioenergy crop plants, vol 1. CRC Press, Boca RatonCrossRefGoogle Scholar
  75. Skone T, Gerdes K (2008) Development of baseline data and analysis of life cycle greenhouse gas emissions of petroleum-based fuels, Washington, DCGoogle Scholar
  76. Solomon BD, Bailis R (2014) Introduction. Springer, New YorkGoogle Scholar
  77. Souza S, Pereira S, Turra de Avila M, Pacca S (2012) Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production. Biomass Bioenergy 44:70–79. doi: 10.1016/j.biombioe.2012.04.018 CrossRefGoogle Scholar
  78. Thomas PG, Lippiatt BC, Cooper J (2007) Life cycle impact assessment weights to support environmentally preferable purchasing in the United States. Environ Sci Technol 41:7551–7557. doi: 10.1021/es070750 CrossRefGoogle Scholar
  79. van Dam J, Junginger M, Faaij APC (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sustain Energy Rev 14:2445–2472. doi: 10.1016/j.rser.2010.07.010 CrossRefGoogle Scholar
  80. Velásquez HI, Ruiz AA, de Oliveira S (2010) Análisis energético y exergético del proceso de obtención de etanol a partir de la fruta del banano. Revista Facultad de Ingenieria Universidad de Antioquia 51:87–96Google Scholar
  81. Wang M, Wu M, Huo H (2007) Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ Res Lett 2:024001CrossRefGoogle Scholar
  82. Wang M, Han J, Haq Z, Tyner WE, Wu M, Elgowainy A (2011a) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35:1885–1896. doi: 10.1016/j.biombioe.2011.01.028 CrossRefGoogle Scholar
  83. Wang M, Huo H, Arora S (2011b) Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context. Energy Policy 39:5726–5736CrossRefGoogle Scholar
  84. Wang M, Han J, Dunn JB, Cai H, Elgowainy A (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7:045905CrossRefGoogle Scholar
  85. Wu M, Wang M, Huo H (2006) Fuel-cycle assessment of selected bioethanol production pathways in the United States. Argonne National Laboratory. ANL/ESD/06-7 120Google Scholar
  86. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance Special Issue: Biofuels—II: algal biofuels and microbial. Fuel Cells 102:159–165. doi: 10.1016/j.biortech.2010.07.017 Google Scholar
  87. Yang Y, Bae J, Kim J, Suh S (2012) Replacing gasoline with corn ethanol results in significant environmental problem-shifting. Environ Sci Technol 46:3671–3678. doi: 10.1021/es203641p CrossRefGoogle Scholar
  88. Zaimes GG, Khanna V (2013) Microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnol Biofuels 6:88. doi: 10.1186/1754-6834-6-88 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • David R. Shonnard
    • 1
    • 4
    Email author
  • Bethany Klemetsrud
    • 1
  • Julio Sacramento-Rivero
    • 2
  • Freddy Navarro-Pineda
    • 2
  • Jorge Hilbert
    • 3
  • Robert Handler
    • 4
  • Nydia Suppen
    • 5
  • Richard P. Donovan
    • 6
  1. 1.Department of Chemical EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Faculty of Chemical EngineeringUniversidad Autónoma de YucatánMéridaMexico
  3. 3.National Agricultural Technology InstituteINTABuenos AiresArgentina
  4. 4.Sustainable Futures InstituteMichigan Technological UniversityHoughtonUSA
  5. 5.CADIS - Center for LCA and Sustainable DesignMexico CityMexico
  6. 6.University of CaliforniaIrvineUSA

Personalised recommendations