Advertisement

Environmental Management

, Volume 56, Issue 6, pp 1330–1355 | Cite as

Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas

  • Hero T. Gollany
  • Brian D. Titus
  • D. Andrew Scott
  • Heidi Asbjornsen
  • Sigrid C. Resh
  • Rodney A. Chimner
  • Donald J. Kaczmarek
  • Luiz F. C. Leite
  • Ana C. C. Ferreira
  • Kenton A. Rod
  • Jorge Hilbert
  • Marcelo V. Galdos
  • Michelle E. Cisz
Article

Abstract

Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

Keywords

Agroecosystem Bioenergy feedstock Carbon Forestry Soil Sustainability 

Notes

Acknowledgments

The authors gratefully acknowledge support in part by the U.S. National Science Foundation grant CBET-1140152 “RCN-SEES: A Research Coordination Network on Pan American Biofuels and Bioenergy Sustainability”. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer. We thank reviewers for helpful comments and suggestions. This publication is based upon work supported by the U.S. Department of Agriculture-Agricultural Research Service under the ARS-GRACEnet and REAP projects.

References

  1. AAFC (2015) Agriculture and Agri-Food Canada Biomass Inventory Mapping and Analysis Tool. http://www.agr.gc.ca/atlas/bimat. Accessed 15 April 2015
  2. Aber JD, Goodale CL, Ollinger SV, Smith M-L, Magill AH, Martin ME, Hellett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389CrossRefGoogle Scholar
  3. Achard F, Eva HD, Mayaux P, Stibig H J, Belward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Glob Biogeochem Cycles 18. doi: 10.1029/2003GB002142
  4. Achten WMJ, Akinnifesi FK, Maes WH, Trabucco A, Aerts R, Mathijs E, Reubens B, Singh V, Verchot L, Muys B (2010) Jatropha integrated agroforestry systems—biodiesel pathways towards sustainable rural development. In: Ponterio C, Ferra C (eds) Jatropha curcas as a Premier Biofuel: cost, Growth and Management. NOVA Science Publishers, Hauppauge, NY, pp 85–102Google Scholar
  5. Achten MJ, Trabucco A, Maes WH, Verchot LV, Aerts R, Mathijs E, Vantomme P, Singh VP, Muys B (2012) Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands—lessons learned from Jatropha. J Arid Environ 98:135–145CrossRefGoogle Scholar
  6. Adams MB, Burger JA, Jenkins AB, Zelazny L (2000) Impact of harvesting and atmospheric pollution on nutrient depletion of eastern US hardwood forests. For Ecol Manag 138:301–319CrossRefGoogle Scholar
  7. Adler PR, Del Grosso SJ, Parton WJ (2007) Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol Appl 17:675–691CrossRefGoogle Scholar
  8. Ågren GI, Wetterstedt JÅM, Billberger MFK (2012) Nutrient limitation on terrestrial plant growth—modelling the interaction between nitrogen and phosphorus. New Phytol 194:953–960. doi: 10.1111/j.1469-8137.2012.04116.x CrossRefGoogle Scholar
  9. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372CrossRefGoogle Scholar
  10. Albaugh JM, Sucre EB, Leggett ZH et al (2012a) Evaluation of intercropped switchgrass establishment under a range of experimental site preparation treatments in a forested setting on the Lower Coastal Plain of North Carolina, USA. Biomass Bioenergy 46:673–682. doi: 10.1016/j.biombioe.2012.06.029 CrossRefGoogle Scholar
  11. Albaugh TJ, Vance ED, Gaudreault C, Fox TR, Allen HL, Stape JL, Rubilar RA (2012b) Carbon emissions and sequestration from fertilization of pine in the southeastern United States. For Sci 58:419–429Google Scholar
  12. Allen LH (1990) Plant responses to rising carbon dioxide and potential interactions with air pollutants. J Environ Qual 19:15–34CrossRefGoogle Scholar
  13. Allmaras RR, Copeland SM, Copeland PJ, Oussible M (1996) Spatial relations between oat residue and ceramic spheres when incorporated sequentially by tillage. Soil Sci Soc Am J 60:1209–1216CrossRefGoogle Scholar
  14. Anderson DM, Glibert PM, Burkholder CM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries 25:704–726CrossRefGoogle Scholar
  15. Angers DA, Eriksen-Hamel NS (2008) Full-Inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Sci Soc Am J 72:1370–1374. doi: 10.2136/sssaj2007.0342 CrossRefGoogle Scholar
  16. Archibald DJ, Wiltshire WB, Morris DM (1997) Forest management guidelines for the protection of the physical environment. Version 1.0. Ontario Ministry of Natural Resources #51032, ISBN 0-7794-2333-XGoogle Scholar
  17. Asbjornsen H, Goldsmith GR, Alvarado-Barrientos MS, Rebel K, van Osch FP, Rietkerk M, Chen J, Gotsch S, Tobon C, Geissert DR, Gomez-Tale A, Vache K, Dawson TE (2011) Ecohydrological advances and applications in plant water relations research: a review. J Plant Ecol 4:3–22. doi: 10.1093/jpe/rtr005 CrossRefGoogle Scholar
  18. Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. doi: 10.1007/s11104-010-0464-5 CrossRefGoogle Scholar
  19. Bailey VL, Smith JL, Bolton H (2002) Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration. Soil Biol Biochem 34:997–1007. doi: 10.1016/s0038-0717(02)00033-0 CrossRefGoogle Scholar
  20. Barreto RC, Madari BE, Maddock JEL, Machado PLOA, Torres E, Franchini JC, Costa AR (2009) The impact of soil management on aggregation, carbon stabilization, and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil. Agric Ecosyst Environ 132:243–251CrossRefGoogle Scholar
  21. Basiliko N, Khan A, Prescott CE, Roy R, Grayston SJ (2009) Soil greenhouse gas and nutrient dynamics in fertilized western Canadian plantation forests. Can J For Res 39:1220–1235CrossRefGoogle Scholar
  22. Batjes NH (2009) Harmonized soil profile data for applications at global and continental scales: updates to the WISE database. Soil Use Manag 25:124–127CrossRefGoogle Scholar
  23. Battle-Bayer L, Batjes NH, Bindraban PS (2010) Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: a review. Agric Ecosyst Environ 137:47–58CrossRefGoogle Scholar
  24. Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196CrossRefGoogle Scholar
  25. B.C. Ministry of Forests (1999) Hazard assessment keys for evaluating site sensitivity to soil degrading processes guidebook, 2nd ed, Version 2.1. For Prac Br, B.C. Min For, Victoria, B.C. Forest Practices Code of British Columbia GuidebookGoogle Scholar
  26. Bélanger N, Paré D, Bouchard M, Daoust G (2004) Is the use of trees with superior growth a threat to soil nutrient availability? A case study with Norway spruce. Can J For Res 34:560–572CrossRefGoogle Scholar
  27. Benjamin JG, Nelson DC, Vigil MF (2003) Quantifying effects of soil conditions on plant growth and crop production. Geoderma 116:137–148CrossRefGoogle Scholar
  28. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234CrossRefGoogle Scholar
  29. Berndes G, Bird N, Cowie A (2010) Bioenergy, land use change and climate change mitigation. IEA Bioenergy ExCo 2010:3Google Scholar
  30. Berthrong ST, Jobbagy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241CrossRefGoogle Scholar
  31. Biederman L, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214CrossRefGoogle Scholar
  32. Billings WD, Peterson KM, Luken JO, Mortensen DA (1984) Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra ecosystems. Oecol 65:26–29CrossRefGoogle Scholar
  33. Binkley D, Fisher R (2013) Ecology and management of forest soils, 4th edn. Wiley-Blackwell, New YorkGoogle Scholar
  34. Binkley D, Burnham H, Allen HL (1999) Water quality impacts of forest fertilization with nitrogen and phosphorus. For Ecol Manag 121:191–213CrossRefGoogle Scholar
  35. Blanco-Canqui H, Lal R (2008) Corn stover removal impacts on micro-scale soil physical properties. Geoderma 145:335–346. doi: 10.1016/j.geoderma.2008.03.016 CrossRefGoogle Scholar
  36. Blanco-Canqui H, Lal R (2009a) Crop residue removal impacts on soil productivity and environmental quality. Crit Rev Plant Sci 28:139–163. doi: 10.1080/07352680902776507 CrossRefGoogle Scholar
  37. Blanco-Canqui H, Lal R (2009b) Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc Am J 73:418–426. doi: 10.2136/sssaj2008.0141 CrossRefGoogle Scholar
  38. Boden T, Andres B, Marland G (2013) Global CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring, 1751–2010. Data at http://cdiac.ornl.gov/ftp/ndp030/global.1751_2010.ems. Accessed 19 March 2015
  39. Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438CrossRefGoogle Scholar
  40. Brady NC, Weil RR (2007) The nature and properties of soils, 14th edn. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  41. Burger JA, Kelting DL (1999) Using soil quality indicators to assess forest stand management. For Ecol Manag 122:155–166CrossRefGoogle Scholar
  42. Burger JA, Pritchett WL (1984) Effects of clearfelling and site preparation on nitrogen mineralization in a southern pine stand. Soil Sci Soc Am J 48:1432–1437CrossRefGoogle Scholar
  43. Burgess MS, Mehuys GR, Madramooto CA (2002) Decomposition of grain-corn residues (Zea mays L.): a litterbag study under three tillage systems. Can J Soil Sci 82:127–138CrossRefGoogle Scholar
  44. Buttle JH, Murray CD (2011) Hydrological implications of forest biomass use. Final report prepared for Environment Canada, Ottawa, Canada. August 31, 2011Google Scholar
  45. Buyanovsky GA, Brown JR, Wagner GH (1997) Sanborn field effect of 100 years of cropping on soil parameter. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, FL, pp 205–226Google Scholar
  46. Casas (2006) La oportunidad de preservar la calidad y la salud de los suelos http://www.produccion-animal.com.ar/suelos_ganaderos/30-preservar_calidad_y_salud_suelos.pdf
  47. Cerri CEP, Sparovek G, Bernoux M, Easterling WE, Melillo JM, Cerri CC (2007) Tropical agriculture and global warming: impacts and mitigation options. Sci Agric 64:83–99CrossRefGoogle Scholar
  48. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss Eng A, Lucht W, Mapako M, Masera Cerutti O, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, CambridgeGoogle Scholar
  49. Ciampitti IA, García FO (2007) Requerimientos nutricionales, absorción y extracción de macronutrientes y nutrientes secundarios. I Cereales, Oleaginosos e Industriales. Informaciones Agronómicas 33, Archivo Agronómico 11. IPNI Cono Sur. Acassuso, Buenos Aires, Argentina. Disponible en http://www.ipni.net/ppiweb/ltams.nsf/$webindex/E036AC788900A6560325728E0069FF05Google Scholar
  50. Conley DJ (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia 410:87–96CrossRefGoogle Scholar
  51. Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ 19:292–305. doi: 10.1016/j.gloenvcha.2008.10.009 CrossRefGoogle Scholar
  52. Correll DL (1999) Phosphorus: a rate limiting nutrient in surface waters. Poult Sci 78:674–682CrossRefGoogle Scholar
  53. Cramer MD, Hawkins HJ, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24CrossRefGoogle Scholar
  54. da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range of soils. Soil Sci Soc Am J 58:1775–1781CrossRefGoogle Scholar
  55. Darmody RG, Peck TR (1997) Soil organic changes through time at the university of Illinois Morrow Plots. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, FL, pp 161–169Google Scholar
  56. Davis SC, Parton WJ, Del Grosso SJ, Keough C, Marx E, Adler PR, DeLucia EH (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74. doi: 10.1890/110003 CrossRefGoogle Scholar
  57. De Graaff MA, Van Groenigen JK, Six J, Hungate B, Van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091CrossRefGoogle Scholar
  58. DeFries RS, Asner GP and Houghton RA (eds) (2004) Ecosystems and land use change. American Geophysical Union, Geophysical Monograph Series 153:344. doi: 10.1029/GM153
  59. Del Grosso SJ, Mosier AR, Parton WJ, Ojima DS (2005) DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil Tillage Res 83:9–24. doi: 10.1016/j.still.2005.02.007 CrossRefGoogle Scholar
  60. Del Grosso SJ, Ojima DS, Parton WJ, Stehfest E, Heisteman M, De Angelo B, Rose S (2009) Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global Planet Change 67:44–50. doi: 10.1016/j.gloplacha.2008.12.006 CrossRefGoogle Scholar
  61. Del Grosso SJ, White JW, Wilson G, Vandenberg B, Karlen DL, Follett RF, Johnson JMF, Franzluebbers AJ, Archer DW, Gollany HT, Liebig MA, Ascough J, Reyes-Fox M, Pellack L, Starr J, Barbour N, Polumsky RW, Gutwein M, James D (2013) Introducing the GRACEnet/REAP data contribution, discovery and retrieval system. J Environ Qual 42:1274–1280. doi: 10.2134/jeq2013.03.0097 CrossRefGoogle Scholar
  62. Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresour Technol 77:287–295CrossRefGoogle Scholar
  63. Denef K, Archibeque S, Paustian K (2011) Greenhouse gas emissions from U.S. agriculture and forestry: a review of emissions, sources, controlling factors, and mitigation potential. Interim report to USDA under Contract #GS-23F-8182HGoogle Scholar
  64. Dimitriou I, Mola-Yudego B, Aronsson P (2012) Impact of willow short rotation coppice on water quality. Bioenerg Res 5:537–545CrossRefGoogle Scholar
  65. Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks–a meta-analysis. Glob Chang Biol 17:1658–1670CrossRefGoogle Scholar
  66. Donner SD, Kucharik CJ (2008) Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi river. PNAS 105:4513–4518CrossRefGoogle Scholar
  67. Ducey M, Allen HL (2001) Nutrient supply and fertilization efficiency in midrotation loblolly pine plantations: a modeling analysis. For Sci 47(1):96–102Google Scholar
  68. Dymond CD, Titus BD, Stinson G, Kurz WA (2010) Future quantities and spatial distribution of harvesting residue and dead wood from natural disturbances in Canada. For Ecol Manag 260:181–192CrossRefGoogle Scholar
  69. Ebermayer E (1876) Die gesamte Lehre der Waldstreu, mit Rücksicht auf die chemische Statik des Waldbaues. [The entire knowledge of forest litter with consideration of chemical data for silviculture. In German.]. Springer, BerlinGoogle Scholar
  70. Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Piñeiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251CrossRefGoogle Scholar
  71. Edmeades DC (2003) The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutr Cycl Agroecosyst 66:165–180CrossRefGoogle Scholar
  72. Efroymson RA, Dale VH, Kline KL, McBride AC, Bielicki JM, Smith RL, Parish ES, Schweizer PE, Shaw DM (2013) Environmental indicators of biofuel sustainability: what about context? Environ Manag 51:291–306CrossRefGoogle Scholar
  73. Egnell G (2011) Is the site productivity decline in Norway spruce following whole tree harvesting in the final felling in boreal Sweden permanent or temporary? For Ecol Manage 261:148–153CrossRefGoogle Scholar
  74. FAO-UNESCO (2007) Digital Soil Map of the World, 2007-02-28, version 3.6. http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116. Accessed 30 May 2014
  75. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238CrossRefGoogle Scholar
  76. Filoso S, Martinelli LA, Williams MR, Lara LB, Krusche A, Ballester MV, Victoria RL, Camargo PB (2003) Land use and nitrogen export in the Piracicaba River basin, Southeast Brazil. Biogeochem 65:275–294CrossRefGoogle Scholar
  77. Fleming RL, Powers RF, Foster NW, Kranabetter JM, Scott DA, Ponder F Jr, Berch SM, Chapman WK, Kabzems RD, Ludovici KH, Morris DM, Page-Dumroese DS, Sanborn PT, Sanchez FG, Stone DM, Tiarks AE (2006) Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of Long-Term Soil Productivity sites. Can J For Res 36:529–550CrossRefGoogle Scholar
  78. Follett RF, Paul EA, Leavitt SW, Halvorson AD, Lyon D, Peterson GA (1997) Carbon isotope ratios of Great Plains soils in wheat-fallow systems. Soil Sci Soc Am J 61:1068–1077CrossRefGoogle Scholar
  79. Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switch grass and no-till maize grown for Bioenergy. Bioenergy Res 5:866–875. doi: 10.1007/s12155-012-9198-y CrossRefGoogle Scholar
  80. Forestry Commission UK (2009) Guidance on site selection for brash removal. Forest Research, Forestry Commission, UKGoogle Scholar
  81. FSC (2014) National Forest Stewardship Standards of the Forest Stewardship Council. https://ic.fsc.org/national-standards.247.htm. Accessed 15 May 2014
  82. Garrigues E, Corsona MS, Angers DA, van der Werf HMG, Walter C (2012) Soil quality in Life Cycle Assessment: towards development of an indicator. Ecol Indic 18:434–442CrossRefGoogle Scholar
  83. Gasparatos A, Strombert P, Takeuchi K (2011) Biofuels, ecosystem services and human well-being: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128CrossRefGoogle Scholar
  84. Gassman PW, Williams JR, Wang X, Saleh A, Osei E, Hauck LM, Izaurralde RC, Flowers JD (2010) THE agricultural policy/environmental extender (APEX) model: an emerging tool for landscape and watershed environmental analyses. ASABE 53:711–740CrossRefGoogle Scholar
  85. Gelfand I, Zenone T, Jasrotia P, Chen J, Hamilton SK, Robertson GP (2011) Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. PNAS. doi: 10.1073/pnas.1017277108 Google Scholar
  86. Giardina CP, Ryan MG (2004) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861. doi: 10.1038/35009076 CrossRefGoogle Scholar
  87. Giltrap DL, Li CS, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136:292–300CrossRefGoogle Scholar
  88. Gollany HT, Schumacher TE, Evenson P, Lindstrom MJ, Lemme GD (1991) Aggregate stability of an eroded and desurfaced Typic Argiustoll. Soil Sci Soc Am J 55:811–816CrossRefGoogle Scholar
  89. Gollany HT, Schumacher TE, Lindstrom MJ, Evenson P, Lemme GD (1992) Topsoil depth and desurfacing effects on properties and productivity of a Typic Argiustoll. Soil Sci Soc Am J 56:220–225CrossRefGoogle Scholar
  90. Gollany HT, Molina JAE, Clapp CE, Allmaras RR, Layese MF, Baker JM, Cheng HH (2004) Nitrogen leaching and denitrification in continuous corn as related to residue management. Environ Manag. doi: 10.1007/s00267-002.9138-x Google Scholar
  91. Gollany HT, Allmaras RR, Copeland SM, Albrecht SL, Douglas CL Jr (2005) Tillage and nitrogen fertilizer influences on carbon and soluble silica relations in a Pacific Northwest Mollisol. Soil Sci Soc Am J 69:1102–1109CrossRefGoogle Scholar
  92. Gollany HT, Allmaras RR, Copeland SM, Albrecht SL, Douglas CL Jr (2006) Incorporated source carbon and nitrogen fertilization effects on carbon storage and soluble silica in a Haploxeroll. Soil Sci 171:585–597CrossRefGoogle Scholar
  93. Gollany HT, Novak JM, Liang Y, Albrecht SL, Rickman RW, Follett RF, Wilhelm WW, Hunt PG (2010) Simulating soil organic carbon dynamics with residue removal using the CQESTR model. Soil Sci Soc Am J 74:372–383. doi: 10.2136/sssaj2009.0086 CrossRefGoogle Scholar
  94. Gollany HT, Rickman RW, Liang Y, Albrecht SL, Machado S, Kang S (2011) Predicting agricultural management influence on long-term soil organic carbon dynamics: implications for biofuel production. Agron J103:234–246CrossRefGoogle Scholar
  95. Gollany HT, Follett RF, Liang Y (2012) CQESTR simulations of soil organic carbon dynamics. In: Liebig MA, Franzluebbers AJ, Follett RF (eds) Managing agricultural greenhouse gases: coordinated agricultural research through GRACEnet to address our changing climate. Academic Press, San Diego, pp 271–292CrossRefGoogle Scholar
  96. Gonçalves JLM, Wichert MCP, Gava JL, Serrano MIP (2008) Soil fertility and growth of Eucalyptus grandis in Brazil under different residue management practices. In: Nambiar EKS (eds) Site management and productivity in tropical plantation forests. Proceedings of workshops in Piracicaba (Brazil) 22–26 November 2004 and Bogor (Indonesia) 6–9 November 2006. Bogor, Indonesia. Center for International Forestry Research (CIFOR)Google Scholar
  97. Gopalakrishnan G, Negri MC, Wang M, Wu M, Snyder SW, Lafreniere L (2009) Biofuels, land, and water: a systems approach to sustainability. Environ Sci Tech 43:6094–6100CrossRefGoogle Scholar
  98. Gopalakrishnan G, Negri MC, Salas W (2012) Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB Bioenergy 4:739–750CrossRefGoogle Scholar
  99. Govaerts B, Fuentes M, Mezzalama et al (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res 94:209–219CrossRefGoogle Scholar
  100. Green CJ, Blackmer AM (1995) Residue decomposition effects on nitrogen availability to corn following corn or soybean. Soil Sci Soc Am J 59:1065–1070CrossRefGoogle Scholar
  101. Gregorich EG, Ellert BH, Drury CF, Liang BC (1996) Fertilization effects on soil organic matter turnover and corn residue placement. Soil Sci Soc Am J 60:472–476CrossRefGoogle Scholar
  102. Gunkel G, Kosmol J, Sobral M, Rohn H, Montenegro S, Aurelian J (2007) Sugarcane industry as a source of water pollution-Case study on the situation in Ipojuca River, Pernambuco, Brazil. Water Air Soil Pollut 180:261–269CrossRefGoogle Scholar
  103. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360CrossRefGoogle Scholar
  104. Hammerbeck AL, Stetson SJ, Osborne SL, Schumacher TE, Pikul JL (2012) Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci Soc Am J 76:1390–1398. doi: 10.2136/sssaj2011.0421 CrossRefGoogle Scholar
  105. Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Sci 342:850–853. doi: 10.1126/science.1244693 CrossRefGoogle Scholar
  106. Harper RJ, Sochacki SJ, Smettem KRJ, Robinson N (2010) Bioenergy feedstock potential from short-rotation woody crops in a dryland environment. Energy Fuels 24:225–231CrossRefGoogle Scholar
  107. Harpole S, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Let 14:852–862CrossRefGoogle Scholar
  108. Hastings AF, Wattenbach M, Eugster W, Li CS, Buchmann N, Smith P (2010) Uncertainty propagation in soil greenhouse gas emission models: an experiment using the DNDC model and at the Oensingen cropland site. Agric Ecosyst Environ 136:97–110CrossRefGoogle Scholar
  109. Hazlett PW, Morris DM, Fleming RL (2014) Effect of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Sci Soc Am J 78:S183–S195CrossRefGoogle Scholar
  110. Heilman P, Norby RJ (1998) Nutrient cycling fertility management in temperate short rotation forest systems. Biomass Bioenergy 14:361–370CrossRefGoogle Scholar
  111. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. http://www.worldclim.org/current. Accessed 6 June 2014
  112. Hilbert JA, Guerra V, Lopardo NCL (2014) Evolución de la percepción pública de los biocombustibles en Argentina Serie Informes técnicos bioenergía Año 3 Num 5 2014 ISBN/ISSN 978-987-521-498-9/2250-8481Google Scholar
  113. Hoskinson RL, Karlen DL, Birrell SJ, Radtke CW, Wilhelm WW (2007) Engineering, nutrient removal and feedstock conversion evaluations of four corn stover harvest scenarios. Biomass Bioenergy 31:126–136CrossRefGoogle Scholar
  114. Houghton RA (2008) Carbon flux to the atmosphere from land-use changes: 1850–2005. In TRENDS: a compendium of data on global change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USAGoogle Scholar
  115. Huggins DR, Buyanovky GA, Wagner GH, Brown JR, Darmody RG, Peck TR, Lesoing GW, Vanotti MB, Bundy LG (1998) Soil organic C in the tallgrass prairie-derived region of the cornbelt: effects of long-term crop management. Soil Tillage Res 47:219–234CrossRefGoogle Scholar
  116. Ice GG (2004) History of innovative best management practice development and its role in addressing water quality limited waterbodies. J Environ Eng 130:684–689CrossRefGoogle Scholar
  117. Ice GG, Schilling E, Vowell J (2010) Trends for forestry best management practices implementation. J For 108:267–273Google Scholar
  118. Ingestad T (1974) Towards optimum fertilization. Ambio 3:49–54Google Scholar
  119. Insam H, Knapp BA (eds) (2011) Recycling of biomass ashes. Springer, New YorkGoogle Scholar
  120. IPCC (2011) Summary for Policymakers. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, CambridgeGoogle Scholar
  121. Izaurralde RC, Williams JR, McGill WB, Rosenberg NJ, Quiroga Jakas MC (2006) Simulation soil C dynamics with EPIC: model description and testing against long-term data. Ecol Model 192:362–384CrossRefGoogle Scholar
  122. Janssen R, Rutz DD (2011) Sustainability of biofuels in Latin America: risks and opportunities. Energy Policy 39:5717–5725CrossRefGoogle Scholar
  123. Janzen HH, Johnston AM, Carefoot JM, Lindwall CW (1997) Soil organic matter dynamics in long-term experiments in Sothern Alberta. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, FL, pp 283–296Google Scholar
  124. Janzen HH, Campbell CA, Izaurralde RC, Ellert BH, Juma NG, McGill WB, Zentner RP (1998) Management effects on soil C storage on the Canadian prairies. Soil Tillage Res 47:181–195CrossRefGoogle Scholar
  125. Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144:175–187CrossRefGoogle Scholar
  126. Jemison GM, Lowden MS (1974) Management and research implications. In: Cramer OP (ed) Environmental effects of forest residues management in the Pacific Northwest—a state-of-knowledge compendium. USDA For Serv Gen Tech Rep PNW-24, pp A1–A33Google Scholar
  127. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306CrossRefGoogle Scholar
  128. Jeziorski A, Yan ND, Paterson AM, DeSellas AM, Turner MA, Jeffries DS, Keller W, Weeber RC, McNicol DK, Palmer ME, McIver K, Arseneau K, Ginn BK, Cumming BF, Smol JP (2008) The widespread threat of calcium decline in fresh waters. Science 322:1374–1377CrossRefGoogle Scholar
  129. Jeziorski A, Tanentzap AJ, Yan ND, Paterson AM, Palmer ME, Korosi JB, Rusak JA, Arts MT, Keller W, Ingram R, Cairns A, Smol JP (2015) The jellification of north temperate lakes. Proc R Soc B 282:20142449CrossRefGoogle Scholar
  130. Jin VL, Baker JM, Johnson JMF, Karlen DL, Lehman RM, Osborne SL, Sauer TJ, Stott DE, Varvel GE, Venterea RT, Schmer MR, Wienhold BJ (2014) Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. Bioenergy Res. doi: 10.1007/s12155-014-9421-0 Google Scholar
  131. Johnson DW (1994) Reasons for concern over impacts of harvesting. In: Dyck WJ, Cole DW, Comerford NB (eds) Impacts of forest harvesting on long-term site productivity. Chapman and Hall, London, pp 1–12CrossRefGoogle Scholar
  132. Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238CrossRefGoogle Scholar
  133. Johnson DW, Todd DE (1998) The effects of harvesting on long-term changes in nutrient pools in a mixed oak forest. Soil Sci Soc Am J 62:1725–1735CrossRefGoogle Scholar
  134. Johnson DW, West DC, Todd DE, Mann LK (1982) Effects of sawlog vs whole-tree harvesting on the nitrogen, phosphorus, potassium, calcium budgets of an upland mixed oak forest. Soil Sci Soc Am J 46:1304–1309CrossRefGoogle Scholar
  135. Johnson DW, Binkley D, Conklin P (1995) Simulated effects of atmospheric deposition, harvesting, and species change on nutrient cycling in a loblolly pine forest. For Ecol Manag 76:29–45CrossRefGoogle Scholar
  136. Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683CrossRefGoogle Scholar
  137. JRC European Soil Portal (2010) Climatic zone for Commission Decision of 10 June 2010. http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy/. Accessed 1 May 2014
  138. Karlen DL, Wollenhaupt NC, Erbach DC, Berry EC, Swan JB, Eash NS, Jordahl JL (1994) Crop residue effects on soil quality following 10-years of no-till corn. Soil Tillage Res 31:149–167. doi: 10.1016/0167-1987(94)90077-9 CrossRefGoogle Scholar
  139. Keeney DR (1982) Nitrogen management for maximum efficiency and minimum pollution. In: Stevenson FJ (ed) Nitrogen in agricultural soils. Agron Monogr 22:605–649. doi: 10.2134/agronmonogr22.c16
  140. Kimmins JP (1974) Sustained yield, timber mining and the concept of ecological rotation; a British Columbian view. For Chron 50:27–31CrossRefGoogle Scholar
  141. Kimmins JP, Mailly D, Seely B (1999) Modelling forest ecosystem net primary production: the hybrid simulation approach used in FORECAST. Ecol Model 122:195–224CrossRefGoogle Scholar
  142. Kimmins JP, Welham C, Seely B et al (2005) Science in forestry: why does it sometimes disappoint or even fail us? Forestry 81:723–734Google Scholar
  143. Kimmins JP, Blanco JA, Seely B, Welham C (2008) Complexity in modeling forest ecosystems; how much is enough? For Ecol Manag 256:1646–1658CrossRefGoogle Scholar
  144. Kimsey M Jr, Page-Dumroese D, Coleman M (2011) Assessing bioenergy harvest risks: geospatially explicit tools for maintaining soil productivity in western US Forests. Forests 2:797–813CrossRefGoogle Scholar
  145. Kleinman PJA (2005) Phosphorus: agriculture and the environment:1021–1068. doi: 10.2134/agronmonogr46.c31
  146. Kotak BG, Prepas EE, Hrudey SE (1994) Blue green algal toxins in drinking water supplies: research in Alberta. Limnol Oceanogr 36:251–267Google Scholar
  147. Kowalik PJ, Randerson PF (1994) Nitrogen and phosphorus removal by willow stands irrigated with municipal waste water—a review of the Polish experience. Biomass Bioenergy 6:133–139CrossRefGoogle Scholar
  148. Kranabetter JM, Sanborn P, Chapman BK, Dube S (2006) The contrasting response to soil disturbance between lodgepole pine and hybrid white spruce in subboreal forests. Soil Sci Soc Am J 70:1591–1599CrossRefGoogle Scholar
  149. Laflen J, Colvin T (1981) Effect of crop residue on soil loss from continuous row cropping. Trans ASAE 24:605–609CrossRefGoogle Scholar
  150. Lal R (1997) Soils of the tropics and their management for plantation forestry. In: Nambiar EKS, and Brown AG (eds) Management of soil, nutrients and water in tropical plantation forests. ACIAR Monograph No. 43, Canberra ACT, Australia, pp xii + 571Google Scholar
  151. Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:275–584. doi: 10.1016/j.envint.2004.09.005 CrossRefGoogle Scholar
  152. Lal R (2007) Biofuel from crop residue. Soil Tillage Res 93:237–238CrossRefGoogle Scholar
  153. Lal R, Kimble J, Follett RF, Stewart BA (1998) Soil processes and the carbon cycle. CRC/Lewis Publishers, Boca Raton, FLGoogle Scholar
  154. Lamers P, Junginger M, Hamelinck C, Faaij A (2012) Developments in international solid biofuel trade—an analysis of volumes, policies, and market factors. Renew Sust Energy Rev 16:3176–3199CrossRefGoogle Scholar
  155. Landsberg JJ, Johnsen KH, Albaugh TJ, Allen HL, McKeand SE (2001) Applying 3-PG, a simple process-based model designed to produce practical results, to data from loblolly pine experiments. For Sci 47(1):43–51Google Scholar
  156. Larson WE (1979) Crop residue: energy production or erosion control? Soil Con Soc Am. Special Publication No. 25, Ankeny, IA, p 28Google Scholar
  157. Lawrence GB, David MB, Bailey SW, Shortle WC (1997) Assessment of calcium status in soils of red spruce forests in the northeastern United States. Biogeochemistry 38:19–39CrossRefGoogle Scholar
  158. Lawton LA, Codd GA (1991) Cyanobacterial (blue–green algae) toxins and their significance in UK and European waters. J Inst Water Environ Manag 5:460–465CrossRefGoogle Scholar
  159. Layton JB, Skidmore EL, Thompson CA (1993) Winter-associated changes in dry-soil aggregation as influenced by management. Soil Sci Soc Am J 57:1568–1572CrossRefGoogle Scholar
  160. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi: 10.1890/06-2057.1 CrossRefGoogle Scholar
  161. Lemke RL, Izaurralde RC, Nyborg M, Solberg ED (1999) Tillage and N-source influence soil-emitted nitrous oxide in the Alberta Parkland region. Can J Soil Sci 79:15–24CrossRefGoogle Scholar
  162. Lewis SL, Maslin MA (2015) Defining the anthropocene. Nature 519:171–180CrossRefGoogle Scholar
  163. Li Q, Allen HL (2003) Nitrogen mineralization dynamics following the establishment of a loblolly pine plantation. Can J For Res 33:364–374CrossRefGoogle Scholar
  164. Liang Y, Gollany HT, Rickman RW, Albrecht SL, Follett RF, Wilhelm WW, Novak JM, Douglas CL Jr (2008) CQESTR Simulation of management practice effects on long-term soil organic carbon. Soil Sci Soc Am J 72:1486–1492CrossRefGoogle Scholar
  165. Liang Y, Gollany HJ, Rickman RW, Albrecht SL, Follett RF, Wilhelm WW, Novak JM, Douglas CL Jr (2009) Simulating soil organic matter with CQESTR (v. 2.0): model description and validation against long-term experiments across North America. Ecol Model 220:568–581CrossRefGoogle Scholar
  166. Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in Northwestern USA and Western Canada. Soil Tillage Res 83:25–52CrossRefGoogle Scholar
  167. Linden DR, Clapp CE, Dowdy RH (2000) Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res 56:167–174CrossRefGoogle Scholar
  168. Lindstrom MJ (1986) Effects of residue harvesting on water runoff, soil erosion and nutrient loss. Agric Ecosyst Env 16:103–112CrossRefGoogle Scholar
  169. Lowdermilk WC (1953) Conquest of the land through seven thousand years. USDA, SCS Agric. Inform. Bull, p 99Google Scholar
  170. Lundborg A (1997) Reducing the nitrogen load: whole-tree harvesting. A literature review. Ambio 26:387–393Google Scholar
  171. Lupi AM, Conti M, Fernández R, Cosentino D, López G (2007) Efecto de las prácticas de repoblación forestal sobre el carbono orgánico del suelo y la estabilidad de los agregados en el noreste de Argentina. [Effect of reforestation practices on soil organic carbon and aggregate stability in northeastern Argentina. In Spanish with English abstract.] Investigación Agraria: Sistemas y Recursos Forestales 16:230–240Google Scholar
  172. Lupi AM, Aparicio J, Boca T, Díaz D, de los Ángeles García, M, Ingaramo L, Quintero C, Boschetti G (2011) Manejo del fósforo en sitios contrastantes de la región Mesopotámica Argentina bajo uso forestal. [Management of phosphorus in contrasting sites in the Mesopotamian region of Argentina under forestry. In Spanish.] IPNI, Informaciones Agronómicas No. 4:7–13Google Scholar
  173. Machado S (2011) Soil organic carbon dynamics in the Pendleton long-term experiments: implication for biofuel production in Pacific Northwest. Agron J 103:253–260CrossRefGoogle Scholar
  174. Mahmood-ul-Hassan M, Rafique E, Rashid A (2013) Physical and hydraulic properties of aridisols as affected by nutrient and crop-residue management in a cotton-wheat system. Acta Sci-Agron 35:127–137. doi: 10.4025/actasciagron.v35i1.14683 CrossRefGoogle Scholar
  175. Malhi SS, Lemke R (2007) Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil Tillage Res 96:269–283. doi: 10.1016/j.still.2007.06.011 CrossRefGoogle Scholar
  176. Malhi SS, Lemke R, Wang ZH, Chhabra BS (2006) Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality and greenhouse gas emissions. Soil Tillage Res 90:171–183. doi: 10.1016/j.still.2005.09.001 CrossRefGoogle Scholar
  177. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosys Env 89:149–166CrossRefGoogle Scholar
  178. Marín-Spiotta E, Sharma S (2013) Carbon storage in successional and plantation forest soils: a tropical analysis. Glob Eco Biogeogr 22:105–117CrossRefGoogle Scholar
  179. Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuña S (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, pp 1499–1566Google Scholar
  180. Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol expansion in Brazil: environmental and social challenges. Ecol Appl 18:885–898CrossRefGoogle Scholar
  181. Maynard DG, Paré D, Thiffault E, Lafleur B, Hogg KE, Kishchuk B (2014) How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ Rev 22:161–178CrossRefGoogle Scholar
  182. McBride AC, Dale VH, Baskaran LM, Downing ME, Eaton LM, Efroymson RA, Garten CT Jr, Kline KL, Jager HI, Mulholland PJ, Parish ES, Schweizer PE, Storey JM (2011) Indicators to support environmental sustainability of bioenergy systems. Ecol Indic 11:1277–1289CrossRefGoogle Scholar
  183. Meals DW, Dressing SA, Davenport TE (2010) Lag time in water quality response to best management practices: a review. J Environ Qual 39:85–96CrossRefGoogle Scholar
  184. Milài Canals L, Bauer C, Depestele J, Dubreuil A, Knuchel Freiermuth R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007) Key elements in a framework for land use impact assessment within LCA. Int J LCA 12:5–15CrossRefGoogle Scholar
  185. Miner GL, Hansen NC, Inman D, Sherrod LA, Peterson GA (2013) Constraints of no-till dryland agroecosystems as bioenergy production ystems. Agron J 105:364–376CrossRefGoogle Scholar
  186. Moebius-Clune BN, van Es HM, Idowu OJ, Schindelbeck RR, Moebius-Clune DJ, Wolfe DW, Abawi GS, Thies JE, Gugino BK, Lucey R (2008) Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sci Soc Am J 72:960–969CrossRefGoogle Scholar
  187. Mohamoud YM, Ewing LK (1990) Rainfall interception by corn and soybean residue. Trans ASAE 33:507–511CrossRefGoogle Scholar
  188. Molina JAE, Clapp CE, Shaffer MJ, Chichester FW, Larson WE (1983) NCSOIL, a model of nitrogen transformations in soil: description, calibration and behavior. Soil Sci Soc Am J 47:85–91CrossRefGoogle Scholar
  189. Molina JAE, Crocker GJ, Grace PR, Klír J, Körschens M, Poulton PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models. Geoderma 81:91–107CrossRefGoogle Scholar
  190. Morachan YB, Moldenha WC, Larson WE (1972) Effects of increasing amounts organic residues on continuous corn. 1. Yields and soil physical properties. Agron J 64:199–203CrossRefGoogle Scholar
  191. Muth DJ Jr, McCorkle DS, Koch JB, Bryden KM (2012) Modeling sustainable agricultural residue removal at the subfield scale. Agron J 104:970–981. doi: 10.2134/agronj2012.0024 CrossRefGoogle Scholar
  192. Muyibi SA, Ambali AR, Eissa GS (2008) Development-induced water pollution in Malaysia: policy implications from an econometric analysis. Water Policy 10:193–206CrossRefGoogle Scholar
  193. Nave LE, Vance ED, Swanston CW, Curtis PS (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259:857–866CrossRefGoogle Scholar
  194. Nelson RG (2002) Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 22:349–363CrossRefGoogle Scholar
  195. Nogueira EM, Yanai AM, Fonseca FOR, Fearnside PM (2015) Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Glob Chang Biol 21:1271–1292. doi: 10.1111/gcb.12798 CrossRefGoogle Scholar
  196. O’Connell AM, Grove TS, Mendham DS, Rance SJ (2004) Impact of harvest residue management on soil nitrogen dynamics in Eucalyptus globulus plantations in south western Australia. Soil Biol Biochem 36:39–48CrossRefGoogle Scholar
  197. Oberholzer H-R, Freiermuth Knuchel R, Weisskopf P, Gaillard G (2012) A novel method for soil quality in life cycle assessment using several soil indicators. Agron Sustain Dev 32:639–649CrossRefGoogle Scholar
  198. Oechel WC, Vourlitis GL (1995) Effects of global change on carbon storage in cold soils. In: Lal R et al (eds) Soils global change. CRC Press, Boca Raton, Fl, pp 177–187Google Scholar
  199. OMNRF (2015) Forest management guide to silviculture in the Great Lakes-St. Lawrence and Boreal Forests of Ontario. Queen’s Printer for Ontario, Toronto, p 394Google Scholar
  200. Page-Dumroese DS, Jurgensen MF, Tiarks AE, Ponder F Jr, Sanchez FG, Fleming RL, Kranabetter JM, Powers RF, Stone DM, Elioff JD, Scott DA (2006) Soil physical property changes at the North American Long-Term Soil Productivity study sites: 1 and 5 years after compaction. Can J For Res 36:551–564CrossRefGoogle Scholar
  201. Paine L, Peterson T, Undersander D, Rineer K, Bartelt G, Temple S, Sample D, Klemme R (1996) Some ecological and socio-economic considerations for biomass energy crop production. Biomass Bioenergy 10:231–242CrossRefGoogle Scholar
  202. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre (ESDAC): response to European policy support and public data requirements. Land Use Policy 29:329–338CrossRefGoogle Scholar
  203. Parr JF, Papendick RI (1978) Crop residue management systems: New perspectives for soil, water, and energy conservation. Crop residue management systems. ASA Special Publication 31. Oschwald WR, Stelly M, Kral DM and Nauseef JH ASA-CSSA-SSSA, Inc. Madison, WIGoogle Scholar
  204. Parton WJ (1996) The CENTURY model. In: Powlson DS, et al (eds) Evaluation of soil organic matter models. NATO ASI Series I, vol 38. Springer, Berlin, pp 283–291Google Scholar
  205. Parton WJ, Ojima DS, Schimel DS (1996) Models to evaluate soil organic matter storage and dynamics. In: Martin RC, Stewart BA (eds) Structure and organic matter storage in agricultural soil. CRC Press, Boca Raton, FL, pp 421–449Google Scholar
  206. Paustain K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Paustian K, Elliot ET, Cole CV (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, FL, pp 15–49Google Scholar
  207. Paustian K, Elliot ET, Killian K (1998) Modeling soil carbon in relation to management and climate change in some agroecosystems in Central North America. In: Lal R, Kimble J, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC/Lewis Publishers, Boca Raton, FL, pp 459–471Google Scholar
  208. Peckham SD, Perry CH, Wilson BT, Stueve KM (2013) Modeling harvest and biomass removal effects on the forest carbon balance of the Midwest, USA. Environ Sci Policy 25:22–35CrossRefGoogle Scholar
  209. Perdue JH, Young TM, Rials TG (2011) The Biomass Site Assessment Tool—BioSAT. Final Report for U.S. Forest Service, Southern Research Station submitted by The University of Tennessee, Knoxville, p 282Google Scholar
  210. Peterson GA, Halvorson AD, Havlin JL, Jones OR, Lyon DJ, Tanaka DL (1998) Reduced tillage and increased cropping intensity in the Great Plains conserves soil C. Soil Tillage Res 47:207–218CrossRefGoogle Scholar
  211. Piatek KB, Allen HL (2001) Are forest floors in mid-rotation stands of loblolly pine (Pinus taeda) a sink for nitrogen and phosphorus? Can J For Res 31:1164–1174CrossRefGoogle Scholar
  212. Pitman RM (2006) Wood ash use in forestry—a review of the environmental impacts. Forestry 79:563–588. doi: 10.1093/forestry/cpl041 CrossRefGoogle Scholar
  213. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael BAS, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone–carbon response functions as a model approach. Glob Chang Biol 17:2415–2427CrossRefGoogle Scholar
  214. Ponder F, Fleming RL, Berch S, Busse MD, Elioff JD, Hazlett P, Kabzems RD, Kranabetter JM, Morris DM, Page-Dumroese D, Palik BJ, Powers RF, Sanchez FG, Scott DA, Stagg RH, Stone DM, Young DH, Zhang J, Ludovici KH, McKenney DW, Mossa DS, Sanborn PT, Voldseth RA (2012) Effects of organic matter removal, soil compaction and vegetation control on 10th year biomass and foliar nutrition: LTSP continent-wide comparisons. For Ecol Manag 278:35–54CrossRefGoogle Scholar
  215. Power JF, Doran JW (1988) Role of crop residue management in nitrogen cycling and use, In: Hargrove WL, et al (eds) Cropping strategies for efficient use of water and nitrogen, Special Publication No. 51. ASA-CSSA-SSSA, Madison, WI, pp 101–113Google Scholar
  216. Power JF, Wiese R, Flowerday D (2001) Managing farming systems for nitrate control: a research review from management systems evaluation areas. J Environ Qual 30:1866–1880. doi: 10.2134/jeq2001.1866 CrossRefGoogle Scholar
  217. Powers RF (2006) Long-Term Soil Productivity: genesis of the concept and principles behind the program. Can J For Res 36:519–528CrossRefGoogle Scholar
  218. Powers RF, Scott DA, Sanchez FG et al (2005) The North American long-term soil productivity experi-ment: findings from the first decade of research. For Ecol Manag 220:31–50CrossRefGoogle Scholar
  219. Powlson DS, Glendining MJ, Coleman K, Whitmore AP (2011) Implications for soil properties of removing cereal straw: results from long-term studies. Agron J 103:279–287. doi: 10.2134/agronj2010.0146s CrossRefGoogle Scholar
  220. Prescott CE, Maynard DG, Laiho R (2000) Humus in northern forests: friend or foe? For Ecol Manag 133:23–36CrossRefGoogle Scholar
  221. Proe MF, Rauscher HM, Yarie J (1994) Computer simulation models and expert systems for predicting productivity decline. In: Dyck WJ, Cole DW (eds) Impacts of forest harvesting on long-term site productivity. Chapman & Hall, New York, pp 151–186CrossRefGoogle Scholar
  222. Ptacnik R, Jenerette GD, Verschoor AM, Huberty AF, Solimini AG, Brookes JD (2005) Applications of ecological stoichiometry for sustainable acquisition of ecosystem services. Oikos 109:52–62CrossRefGoogle Scholar
  223. Rasmussen PE, Albrecht SL (1998) Crop management effects on organic carbon in semi-arid Pacific Northwest soils. In: Lal (ed) Management of carbon sequestration in soil. CRC Press, Boca Raton, FL, pp 209–219Google Scholar
  224. REN21 (2014) Renewables 2014 Global Status Report. REN21 (Renewable Energy Policy Network for the 21st Century) Secretariat Paris, FranceGoogle Scholar
  225. Rennie PJ (1979) Intensive forest production—nutrient cycling as its key process. In: Leaf AL (ed) Symposium on the impact of intensive harvesting on forest nutrient cycling, U.S. Forest Service N.E. For. Exp. Sta., Bromell, PA; US DOE, fuels from biomass systems; and State University of New York, College of Environmental Science and Forestry, Syracuse, New York, pp 361–365Google Scholar
  226. Rickman R, Douglas C, Albrecht S, Berc J (2002) Tillage, crop rotation, and organic amendment effect on changes in soil organic matter. Environ Pollut 116:405–411CrossRefGoogle Scholar
  227. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21:1055–1067CrossRefGoogle Scholar
  228. Robertson GP, Bruuslsema TW, Gehl RJ, Kanter D, Mauzerall DL, Rotz CA, Williams CO (2013) Nitrogen-climate interaction in US agriculture. Biogeochemistry 114:41–70CrossRefGoogle Scholar
  229. Roer JM, Shroyer JP, Paulsen GM (2000) Allelopathy of sorghum on wheat under several tillage systems. Agron J 92:855–860CrossRefGoogle Scholar
  230. Running SW (1994) Testing FOREST-BGC ecosystem process simulations across a climatic gradient in Oregon. Ecol Appl 4:238–247CrossRefGoogle Scholar
  231. Running SW, Gower ST (1991) FOREST-BGC, a general model of forest ecosystem processes for regional applications, II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol 9:147–160CrossRefGoogle Scholar
  232. Rutz D, Janssen R, Rogat J, Borch K, Mittelbach M, Schober S, Vos J, Thebaud A, Ballesteros M, Manzanares P, St James C, Coelho ST, Guardabassi P, Aroca G, Soler L, Riegelhaupt E, Arias T, Masera O, Junquera M, Nadal G, Bravo G (2010) Research and technology development cooperation on biofuels between Europe and Latin America. In: Proceedings of the 18th European biomass conference and exhibition, 3–7 May 2010, Lyon, France, pp 2177–2187Google Scholar
  233. Sá JCM, Cerri CC, Lal R, Dick W, Piccolo MC, Feigl BE (2009) Soil organic carbon and fertility interactions affected by a tillage chronosequence in a Brazilian Oxisol. Soil Tillage Res 104:56–64CrossRefGoogle Scholar
  234. Sainju UM (2014) Cropping sequence and nitrogen fertilization impact on surface residue, soil carbon sequestration, and crop yields. Agron J 106:1231–1242CrossRefGoogle Scholar
  235. Sanchez FG (2001) Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. For Ecol Manag 152:85–96CrossRefGoogle Scholar
  236. Sathre R, Gustavsson L, Bergh J (2010) Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization. Biomass Bioenergy 34:572–581CrossRefGoogle Scholar
  237. Sauer TJ, Hatfield JL, Prueger JH (1996) Corn residue age and placement effects on evaporation and soil thermal regime. Soil Sci Soc J 60:1558–1564CrossRefGoogle Scholar
  238. Sauer TJ, Hatfield JL, Prueger JH, Norman JM (1998) Surface energy balance of a corn residue-covered field. Agric For Meteorol 89:155–168CrossRefGoogle Scholar
  239. Savabi MR, Stott DE (1994) Plant residue impact on rainfall interception. Trans ASAE 37:1093–1098CrossRefGoogle Scholar
  240. Schmidt-Walter P, Lamersdorf NP (2012) Biomass production with willow and poplar short rotation coppices on sensitive areas—the impact on nitrate leaching and groundwater recharge in a dringing water catchment near Hanover, Germany. Bioen Res 5:546–562CrossRefGoogle Scholar
  241. Schoenau JJ, Campbell CA (1996) Impact of crop residues on nutrient availability in conservation tillage systems. Can J Plant Sci 76:621–626CrossRefGoogle Scholar
  242. Schoeneberger M, Bentrup G, de Gooijer H et al (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A. doi: 10.2489/jswc.67.5.128A CrossRefGoogle Scholar
  243. Scott DA, Dean TJ (2006) Energy trade-offs between intensive biomass utilization, site productivity loss, and ameliorative treatments in loblolly pine plantations. Biomass Bioenergy 30:1001–1010CrossRefGoogle Scholar
  244. Scott DA, Burger JA, Crane B (2006) Expanding site productivity research to sustain non-timber forest functions. For Ecol Manag 227:185–192CrossRefGoogle Scholar
  245. Scull P, Franklin J, Chadwick OA, McArthur D (2003) Predictive soil mapping: a review. Prog Phys Geogr 27:171–197CrossRefGoogle Scholar
  246. Seely B, Kimmins JP, Welham C, Scoullar K (1999) Management models: defining stand-level sustainability; exploring stand-level stewardship. J For 97:4–10Google Scholar
  247. Smith CM, David MB, Mitchell CA, Masters MD, Anderson-Teixeira KJ, Bernacchi CJ, DeLucia EH (2013) Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J Environ Qual 42:219–228CrossRefGoogle Scholar
  248. Snyder CS, Bruulsema TW, Jensen TL (2007) Greenhouse gas emissions from cropping systems and the influence of fertilizer management—a literature review. International Plant Nutrition Institute, Norcross, Georgia 25 p Google Scholar
  249. Snyder CS, Bruulsema TW, Jensen TL, Fixen PE (2009) Review of greenhouse gas emissions from crop production systems and fertilizer management effects Ag. Ecosys Environ 133:247–266. doi: 10.1016/j.agee.2009.04.021 CrossRefGoogle Scholar
  250. Soane BD (1990) The role of organic matter in soil compactibility: a review of some practical aspects. Soil Tillage Res 16:179–201CrossRefGoogle Scholar
  251. Sohi SP, Krull E, Lopez-Capel E, Bol R (2010) A review of biochar and its use and function in soil. Adv Agron 105:47–82. doi: 10.1016/S0065-2113(10)05002-9 CrossRefGoogle Scholar
  252. Staricka J, Allmaras RR, Nelson WW (1991) Spatial variation of crop residue incorporation by tillage. Soil Sci Soc Am J 55:1668–1674CrossRefGoogle Scholar
  253. Stone EL (1975) Soil and man’s use of forest land. In: Bernier B, Winget CH (eds) For. Soils For. L. Manag. Proc. Fourth North Am. For. Soils Conf. Les Presses De L’Universite Laval, Laval, Quebec, pp 1–9Google Scholar
  254. Stone EL (1979) Nutrient removals by intensive harvest—some research gaps and opportunities. In: Leaf AL (ed) Symposium on the Impact of Intensive Harvesting on Forest Nutrient Cycling, U.S. Forest Service N.E. For. Exp. Sta., Bromell, PA; US DOE, Fuels from Biomass Systems; and State University of New York, College of Environmental Science and Forestry, Syracuse, New York, pp 366–386Google Scholar
  255. Taylor HM, Burnett E (1964) Influence of soil strength on root-growth habits of plants. Soil Sci 98:174–180CrossRefGoogle Scholar
  256. Tester CF (1990) Organic amendment effects on physical and chemical properties of a sandy soil. Soil Sci Soc Am J 54:827–831CrossRefGoogle Scholar
  257. Thiffault E, Paré D, Bélanger N, Munson A, Marquis F (2006) Harvesting intensity at clear-felling in the boreal forest: impact on soil and foliar nutrient status. Soil Sci Soc Am J 70:691–701CrossRefGoogle Scholar
  258. Thiffault E, Bélanger N, Paré D, Hendershot WH, Munson A (2007) Investigating the soil acid-base status in managed boreal forests using the SAFE model. Ecol Model 206:301–321CrossRefGoogle Scholar
  259. Thiffault E, Hannam K, Paré D, Titus B, Hazlett P, Maynard D, Brais S (2011) Effects of forest biomass harvesting on soil productivity in boreal and temperate forests—a review. Environ Rev 19:278–309CrossRefGoogle Scholar
  260. Thiffault E, Barrette J, Paré D, Titus BD, Keys K, Morris DM, Hope G (2014) Developing and validating indicators of site suitability for forest harvesting residue removal. Ecol Indic 43:1–18CrossRefGoogle Scholar
  261. Tiarks A, Nambiar EKS, Cossalter C (1998) Site management and productivity in tropical forest plantations—impacts on soils and options for management over successive rotations. CIFOR Occasional Paper No. 16Google Scholar
  262. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  263. Titus BD, Smith CT, Puddister D, Richardson JR, Young C (2008) Notes from facilitated discussions. Workshop on The Scientific Foundation for Sustainable Forest Biomass Harvesting Guidelines and Policies, Toronto, Ontario, 18–21 Feb 2008, p 48Google Scholar
  264. Troeh FR, Hobbs JA, Donahue RL (1980) Soil and water conservation for Productivity and environmental protection. Prentic-Hall Inc, Englewood Cliffs, New Jersey, p 718Google Scholar
  265. Ulloa J, Villacura L (2005) Contribution of a private poplar industry in Chile to sustainable rural development. Unasylva 221:2–17Google Scholar
  266. USDA ARS (2015) US Department of Agriculture, Agricultural Research Service Data Portal. http://nrrc.ars.usda.gov/arsdataportal/#/Home. Accessed 15 April 2015
  267. Vadeboncoeur MA (2010) Meta-analysis of fertilization experiments indicates multiple limiting nutrients in northeastern deciduous forests. Can J For Res 40:1766–1780. doi: 10.1139/X10-127 CrossRefGoogle Scholar
  268. Vance ED (1996) Land application of wood-fired and combination boiler ashes: an overview. J Environ Qual 25:937–944. doi: 10.2134/jeq1996.00472425002500050002x CrossRefGoogle Scholar
  269. Vance ED (2000) Agricultural site productivity: principles derived from long-term experiments and their implications for intensively managed forests. For Ecol Manag 138:369–396CrossRefGoogle Scholar
  270. Vance ED, Aust WM, Froese RE, Harrison RB, Morris LA (2014) Biomass harvesting and soil productivity: is the science meeting our policy needs? Soil Sci Soc Am J (posted 17 Jan 2014). doi: 10.2136/sssaj2013.08.0323
  271. Venterea RT, Burger M, Spokas KA (2005) Nitrogen oxide and methane emissions under varying tillage and fertilizer management. J Environ Qual 34:1467–1477CrossRefGoogle Scholar
  272. Vitosh ML, Lucas RE, Silva GH (1997) Long-term effects of fertilizer and manure on corn yield, soil carbon and other soil chemical properties in Michigan. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems. CRC Press, Boca Raton, FL, pp 129–139Google Scholar
  273. Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115. doi: 10.1007/BF0000277 CrossRefGoogle Scholar
  274. Wall A (2012) Risk analysis of effects of whole-tree harvesting on site productivity. For Ecol Manag 282:175–184CrossRefGoogle Scholar
  275. Wang Y-P, Houlton BZ (2009) Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys Res Lett 36:L24403. doi: 10.1029/2009GL041009 CrossRefGoogle Scholar
  276. Wei X, Liu W, Waterhouse J, Armleder M (2000) Simulations on impacts of different management strategies on long-term site productivity in lodgepole pine forests of the central interior of British Columbia. For Ecol Manag 133:217–229CrossRefGoogle Scholar
  277. Wiegmann K, Hennenberg KJ, Fritsche UR (2008) Degraded land and sustainable bioenergy feedstock production. Issue Paper—Joint International Workshop on High Nature Value Criteria and Potential for Sustainable Use of Degraded Lands, Paris, June 30—July 1, 2008Google Scholar
  278. Wilhelm WW, Doran JW, Power JF (1986) Corn and soybean yield response to crop residue management under no-tillage production systems. Agron J 78:184–189CrossRefGoogle Scholar
  279. Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17CrossRefGoogle Scholar
  280. Wilhelm WW, Hess JR, Karlen DL, Johnson JMF, Muth DJ, Baker JM, Gollany HT, Novak JM, Stott DE, Varvel GE (2010) Review: balancing limiting factors and economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Indus Biotech 6:271–287CrossRefGoogle Scholar
  281. Williams JR, Izaurralde RC (2006) The APEX model. In: Singh VP, Frevert DK (eds) Watershed models. CRC Press, Boca Raton, Fl, pp 437–482Google Scholar
  282. Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans ASAE 27:129–144CrossRefGoogle Scholar
  283. Williams BK, Szaro RC, Shapiro CD (2009) Adaptive Management: The U.S. Department of the Interior Technical Guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington, DCGoogle Scholar
  284. Wilts AR, Reicosky DC, Allmaras RR, Clapp CE (2004) Long-term corn residue effects: harvest alternatives, soil carbon turnover, and root-derived carbon. Soil Sci Soc Am J 68:1342–1351CrossRefGoogle Scholar
  285. Wood TE, Cavaleri MA, Reed SC (2012) Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes. Biol Rev 87:912–927CrossRefGoogle Scholar
  286. World Commission on Environment and Development (1987) Our common future. Oxford University Press, Oxford, p 383Google Scholar
  287. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch A, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821–827CrossRefGoogle Scholar
  288. Wu Y, Liu SG (2012) Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass Bioenergy 36:182–191CrossRefGoogle Scholar
  289. Zhou X, Helmers M, Asbjornsen H, Kolka R (2010) Perennial strips reduce nitrate levels in soil and shallow groundwater after grassland-to-cropland conversion. J Environ Qual 39:2006–2015CrossRefGoogle Scholar
  290. Ziegler AD, Phelps J, Yuen JQ, Webb EL, Lawrence D, Fox JM, Koh LP (2012) Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD + policy implications. Glob Chang Biol 18:3087–3099CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2015

Authors and Affiliations

  • Hero T. Gollany
    • 1
  • Brian D. Titus
    • 2
  • D. Andrew Scott
    • 3
  • Heidi Asbjornsen
    • 4
  • Sigrid C. Resh
    • 5
  • Rodney A. Chimner
    • 5
  • Donald J. Kaczmarek
    • 6
  • Luiz F. C. Leite
    • 7
  • Ana C. C. Ferreira
    • 8
  • Kenton A. Rod
    • 9
  • Jorge Hilbert
    • 10
  • Marcelo V. Galdos
    • 11
  • Michelle E. Cisz
    • 5
  1. 1.Columbia Plateau Conservation Research CenterUSDA-Agricultural Research ServiceAdamsUSA
  2. 2.Natural Resources Canada, Canadian Forest ServicePacific Forestry CentreVictoriaCanada
  3. 3.USDA Forest Service, Southern Research StationAgricultural Research CenterNormalUSA
  4. 4.Department of Natural Resources and the Environment and the Earth Systems Research Center, Institute for Earth, Oceans and SpaceUniversity of New HampshireDurhamUSA
  5. 5.School of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonUSA
  6. 6.Oregon Department of ForestrySt. PaulUSA
  7. 7.Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)TeresinaBrazil
  8. 8.Climate Change Adaptation ConsultantTaguatingaBrazil
  9. 9.School of the EnvironmentWashington State UniversityPullmanUSA
  10. 10.Centro de Investigaciónes de Agroindustria (CIA)Instituto Nacional de Tecnologia agropecuaria (INTA)CastelarArgentina
  11. 11.Brazilian Bioethanol Science and Technology Laboratory (CTBE)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil

Personalised recommendations