Advertisement

Environmental Management

, Volume 56, Issue 1, pp 221–232 | Cite as

European Tamaricaceae in Bioengineering on Dry Soils

  • Catherine Lavaine
  • André EvetteEmail author
  • Hervé Piégay
Article

Abstract

We tested the bioengineering capabilities and resistance to drought of cuttings of two typical riparian species of Mediterranean and Alpine streams scarcely used in soil bioengineering: Myricaria germanica (L.) Desv. and Tamarix gallica L. We conducted two experiments, one ex situ and one in situ, with different drought treatments on cuttings of these two species in comparison with Salix purpurea L., a willow very commonly used in bioengineering. The biological traits considered were resprouting/survival rate, quantity of structural roots, above- and belowground biomass, shoot-to-root ratio, and ratio of the biomass increase between the first and second season. T. gallica and M. Germanica showed generally good capabilities for soil bioengineering use. T. gallica showed especially good resprouting rates in drought conditions with a survival rate of 97 % in dry modality of the in situ experiment. M. germanica cuttings presented a much lower survival rate than the other two species in in situ experiments with harsh drought conditions from the beginning. T. gallica had a lower shoot-to-root ratio than S. purpurea for all drought treatments. M. germanica and T. gallica showed a very significant increase in belowground biomass during the second vegetative period, demonstrating that these species can quickly achieve strong anchoring. These observations confirmed the interest of these species in bioengineering.

Keywords

Drought resistance Myricaria germanica Soil bioengineering Streambank Tamaricaceae Tamarix gallica 

Notes

Acknowledgments

This project was supported by the National Research Institute of Science and Technology for Environment and Agriculture, France. The authors thank the Pépinière Forestière de l’Etat from Aix les Milles, France, its manager Patrice Brahic, and its technical team. We also thank the anonymous referees who have allowed us to improve the manuscript substantially. We thank Jacky Girel Vincent Breton, Hanna Chole, Nathan Daumergue, Céline Emberger, Sophie Labonne, Séverine Louis, Eric Mermin, the trainees Thibault Berchoud, Perrine Gonnet, Baptiste Lemaire, and Sylvie Varray for their assistance.

References

  1. AbdAllah AA, Badawy SA, Zayed BA, Elgohary AA (2010) The role of root system traits in the drought tolerance of rice (Oryza sativa L.). World Acad Sci Eng Technol 68:1378–1382Google Scholar
  2. Adam P, Debiais N, Gerber F, Lachat B (2008) Le génie végétal. Un manuel technique au service de l’aménagement et de la restauration des milieux aquatiques. La Documentation Française, ParisGoogle Scholar
  3. Adrover M, Forss AL, Ramon G, Vadell J, Moya G, Martinez Taberner A (2008) Selection of woody species for wastewater enhancement and restoration of riparian woodlands. J Environ Biol 29:357–361Google Scholar
  4. Alshammary SF (2007) Some potential plants of coastal and inland salt affected soils and their relation to soil properties. Asian J Plant Sci 6:821–826CrossRefGoogle Scholar
  5. Anderson JE (1982) Factors controlling transpiration and photosynthesis in Tamarax Chinensis Lour. Ecology 63:48–56CrossRefGoogle Scholar
  6. Arizpe D, Mendes A, Rabaça J (2009) Sustainable riparian zones, a management guide. Generalitat Valenciana, SpainGoogle Scholar
  7. Benkler C, Bregy J (2010) Myricaria germanica, Experiments regarding seed germination & water stress vol Natural scientific term paper within the project “Integrales Flussgebietsmanagement”. Eidgenössische Technische Hochschule Zürich, ZürichGoogle Scholar
  8. Bissardon M, Guibal L, Rameau JL (1997) Corine biotopes, types d’habitats français. ENGREF-ATEN, NancyGoogle Scholar
  9. Busch DE, Smith SD (1993) Effects of fire on water and salinity relations of riparian woody taxa. Oecologia 94:186–194CrossRefGoogle Scholar
  10. Carleton MA (1914) Adaptation of the tamarisk for dry lands. Science 39:692–694CrossRefGoogle Scholar
  11. Cavaillé P, Dommanget F, Daumergue N, Loucougaray G, Spiegelberger T, Tabacchi E, Evette A (2013) Biodiversity assessment following a naturality gradient of riverbank protection structures in French prealps rivers. Ecol Eng 53:23–30. doi: 10.1016/j.ecoleng.2012.12.105 CrossRefGoogle Scholar
  12. Chapin FSI, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447CrossRefGoogle Scholar
  13. Cleverly JR, Smith SD, Sala A, Devitt DA (1997) Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia 111:12–18CrossRefGoogle Scholar
  14. Conesa HM, Faz Ã, Arnaldos R (2006) Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain). Sci Total Environ 366:1–11CrossRefGoogle Scholar
  15. Crow P, Houston TJ (2004) The influence of soil and coppice cycle on the rooting habit of short rotation poplar and willow coppice. Biomass Bioenergy 26:497–505CrossRefGoogle Scholar
  16. Dagar JC, Singh G, Singh NT (2001) Evaluation of forest and fruit trees used for rehabilitation of semiarid alkali-sodic soils in India. Arid Soil Res Rehabil 15:115–133Google Scholar
  17. Danjon F, Fourcaud T, Bert D (2005) Root architecture and wind-firmness of mature Pinus pinaster. New Phytol 168:387–400. doi: 10.1111/j.1469-8137.2005.01497.x CrossRefGoogle Scholar
  18. De Baets S, Poesen J, Knapen A, Barbera GG, Navarro JA (2007) Root characteristics of representative Mediterranean plant species and their erosion-reducing potential during concentrated runoff. Plant Soil 294:169–183CrossRefGoogle Scholar
  19. De Baets S, Poesen J, Reubens B, Wemans K, De Baerdemaeker J, Muys B (2008) Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 305:207–226CrossRefGoogle Scholar
  20. Everitt BL (1980) Ecology of saltcedar—a plea for research (Tamarix chinensis). Environ Geol 3:77–84CrossRefGoogle Scholar
  21. Evette A, Balique C, Lavaine C, Rey F, Prunier P (2011) Using ecological and biogeographical features to produce a typology of the plant species used in bioengineering for riverbank protection in Europe. River Res Appl. doi: 10.1002/rra.1560 Google Scholar
  22. Gary HL, Horton JS (1965) Some sprouting characteristics of five-stamen tamarisk vol Research Note RM-39. Rocky Mountain Forest and Range Experiment Station, Forest Service, U.S. Dept. of Agriculture, Rocky Mountain Forest and Range Experiment Station, Fort Collins, COGoogle Scholar
  23. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104CrossRefGoogle Scholar
  24. Graf C, Böll A, Graf F (2003) Pflanzen im Einsatz gegen Erosion und oberflächennahe Rutschungen Merkblatt für die. Praxis 37:1–8Google Scholar
  25. Gray D, Sotir R (1996) Biotechnical and soil bioengineering slope stabilization—a practical guide for erosion control. Wiley, New YorkGoogle Scholar
  26. Greer E, Pezeshki SR, Shields Jr FD (2006) Influences of cutting diameter and soil moisture on growth and survival of black willow, Salix nigra. J Soil Water Conserv 510Google Scholar
  27. Hansen PL, Pfister RD, Boggs K, Cook BJ, Joy J, Hinckley DK (1995) Classification and management of Montana’s riparian and wetland sites, vol 54. The University of Montana, School of Forestry, Montana Forest and Conservation Experiment Station, MissoulaGoogle Scholar
  28. Hartmann HT, Kester DE, Davies F, Geneve R (1996) Plant propagation: principles and practices, 6th edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  29. Houghton JT et al. (2001) Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. CambridgeGoogle Scholar
  30. Hultine KR, Bush SE, Ehleringer JR (2010) Ecophysiology of riparian cottonwood and willow before, during, and after two years of soil water removal. Ecol Appl 20:347–361CrossRefGoogle Scholar
  31. IPCC (2007) Fourth Assessment Report—contribution of working group II—summary for policymakers—“the physical science basis”. Intergovernmental Panel on Climate Change, GenèveGoogle Scholar
  32. Kammerer H (2003) Artenschutzprojekt Deutsche Tamarisk—Möglichkeiten und Aussichten Einerwiederansiedelung von Myricaria germanica im Gesäuse Nationalpark Gesäuse GmbHGoogle Scholar
  33. Karrenberg S, Blaser S, Kollmann J, Speck T, Edwards PJ (2003) Root anchorage of saplings and cuttings of woody pioneer species in a riparian environment. Funct Ecol 17:170–177CrossRefGoogle Scholar
  34. Koch C, Kollmann J (2012) Clonal re-introduction of endangered plant species: the case of German False Tamarisk in pre-alpine rivers. Environ Manag 50:217–225CrossRefGoogle Scholar
  35. Kramer K, Vreugdenhil SJ, Van der Werf DC (2008) Effects of flooding on the recruitment, damage and mortality of riparian tree species: a field and simulation study on the Rhine floodplain. For Ecol Manage 255:3893–3903CrossRefGoogle Scholar
  36. Kudrnovsky H (2002) Die Deutsche Tamariske an der Isel. Im Auftrag des Österreichischen Alpenvereins, InnsbruckGoogle Scholar
  37. Kudrnovsky H (2013) Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: proposing the Isel river system for the Natura 2000 network. Ecomont 5:5–18. doi: 10.1553/ecomont-5-1s5 CrossRefGoogle Scholar
  38. Kumari B (2008) Tree planting—an answer for improvement of saline/alkaline and waterlogged soils. Ann Biol 24:81–84Google Scholar
  39. Lesica P, DeLuca T (2004) Is tamarisk allelopathic? Plant Soil 267:357–365. doi: 10.1007/s11104-005-0153-y CrossRefGoogle Scholar
  40. Li J, Zhao C, Zhu H, Li Y, Wang F (2007a) Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin. China J Arid Environ 71:350–361CrossRefGoogle Scholar
  41. Li Z, Wu S, Wang X, He M, Ge L, Mu H, Xu G (2007b) Bio-geomorphologic growth process of Tamarix nabkha in the Hotan River basin of Xinjiang. Acta Geogr Sin 62:462–470Google Scholar
  42. Li Z, Yaning C, Weihong L, Xin L (2007c) Responses of Tamarix ramosissima ABA accumulation to changes in groundwater levels and soil salinity in the lower reaches of Tarim River. China Acta Ecol Sin 27:4247–4251CrossRefGoogle Scholar
  43. Liu Y, Rauch HP, Zhang J, Yang X, Gao J (2014) Development and soil reinforcement characteristics of five native species planted as cuttings in local area of Beijing. Ecol Eng 71:190–196. doi: 10.1016/j.ecoleng.2014.07.017 CrossRefGoogle Scholar
  44. Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332CrossRefGoogle Scholar
  45. Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell Publishing Ltd, OxfordGoogle Scholar
  46. Müller N, Scharm S (2001) The importance of seed rain and seed bank for the recolonisation of gravel bars in alpine rivers. Studies on the Vegetation of Alluvial Plains Papers in commemoration of Prof Dr S Okuda’s retirement: studies on the vegetation of alluvial plants. Yokohama, pp 127–140Google Scholar
  47. Norris JE, Stokes A, Mickovski B, Cammeraat E, Van Beek R, Nicoll BC, Achim A (2008) Slope stability and erosion control. Springer, DordrechtCrossRefGoogle Scholar
  48. Pezeshki SR, Li S, Shields FD Jr, Martin LT (2007) Factors governing survival of black willow (Salix nigra) cuttings in a streambank restoration project. Ecol Eng 29:56–65CrossRefGoogle Scholar
  49. Piégay H, Darby SE, Mosselman E, Surian N (2005) A review of techniques available for delimiting the erodible corridor: a sustainable approach to managing bank erosion. River Res Appl 21:773–789CrossRefGoogle Scholar
  50. Qong M, Takamura H, Hudaberdi M (2002) Formation and internal structure of Tamarix cones in the Taklimakan Desert. J Arid Environ 50:81–97CrossRefGoogle Scholar
  51. Rameau JC, Mansion D, Dumé G, Gauberville C, Bardat J, Bruno E, Keller R (2008) Flore forestière française: guide écologique illustré. Région méditerranéenne, vol 3. Institut pour le développement forestier, ParisGoogle Scholar
  52. Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees 21:385–402CrossRefGoogle Scholar
  53. Rood SB, Kalischuk AR, Polzin ML, Braatne JH (2003) Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. Forest Ecol Manag 186:227–242CrossRefGoogle Scholar
  54. Rytter RM, Hansson AC (1993) Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilizes Salix viminalis L. plantation. Biomass Bioenergy 11:129–137CrossRefGoogle Scholar
  55. Salinas Bonillo MJ (1999) Experiencias de estaquillado en plantas ribereñas de ambientes semiáridos Monografías de Flora y Vegetación Béticas 11:157–169Google Scholar
  56. Sandercock PJ, Hooke JM (2010) Assessment of vegetation effects on hydraulics and of feedbacks on plant survival and zonation in ephemeral channels. Hydrol Process 24:695–713CrossRefGoogle Scholar
  57. Sauli G, Cornelini P (2007) The application of native species of shrubs rooted and as cuttings in soil bioengineering intervention in the mediterranean areas in Italy. Geophysical Research Abstracts, vol. 9, 07869. European Geosciences Union 2007, ViennaGoogle Scholar
  58. Schaff SD, Pezeshki SR (2003) Effects of soil conditions on survival and growth of black willow cuttings. Environ Manage 31:748–763CrossRefGoogle Scholar
  59. Schiechtl HM (1973) Sicherungsabeiten im Landschaftsbau. Verlag G.D.W, CallweyGoogle Scholar
  60. Schiechtl HM (1980) Bioengineering for land reclamation and conservation. University of Alberta Press, EdmontonGoogle Scholar
  61. Schiechtl HM, Stern R (1996) Ground bioengineering techniques. For slope protection and erosion control. Blackwell, LondonGoogle Scholar
  62. Smith SD, Devitt DA, Sala A, Cleverly JR, Busch DE (1998) Water relations of riparian plants from warm desert regions. Wetlands 18:687–696CrossRefGoogle Scholar
  63. Stokes A (2007) Eco- and ground bio-engineering: the use of vegetation to improve slope stability. In: Proceedings of the First International Conference on Eco-Engineering, Springer, 13–17 Sept 2004Google Scholar
  64. Tallent-Halsell NG, Walker LR (2002) Responses of Salix gooddingii and Tamarix ramosissima to flooding. Wetlands 22:776–785CrossRefGoogle Scholar
  65. Thomson JR, Bond NR, Cunningham SC, Metzeling L, Reich P, Thompson RM, Mac Nally R (2012) The influences of climatic variation and vegetation on stream biota: lessons from the Big Dry in southeastern Australia. Global Change Biol 18:1582–1596. doi: 10.1111/j.1365-2486.2011.02609.x CrossRefGoogle Scholar
  66. Thuiller W, Lavorel S, Arau jo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci 102:8245–8250CrossRefGoogle Scholar
  67. USDA (2001) Technical Note 1. Plant species with rooting ability from live hardwood materials for use in soil bioengineering techniques. In: Burgdorf DW, Miller C, Wright S, Morganti CE, Darris D, Sakamoto G, the Rose Lake PMC 2007 (eds) Plant Materials Program. USDA, NRCS, Washington, DCGoogle Scholar
  68. Vandersande MW, Glenn EP, Walworth JL (2001) Tolerance of five riparian plants from the lower Colorado River to salinity drought and inundation. J Arid Environ 49:147–159CrossRefGoogle Scholar
  69. Venti D, Bazzurro F, Palmeri F, Uffreduzzi T, Venanzoni R, Gibelli G (2003) Manuale tecnico di Ingegneria Naturalistica della Provincia di Terni. Applicabilità delle tecniche, limiti e soluzioni. Provincia di Terni Servizio Assetto del Territorio - Ufficio Urbanistica, TerniGoogle Scholar
  70. Walker LR, Barnes PL, Powell EA (2006) Tamarix aphylla: a newly invasive tree in southern Nevada. West N Am Natural 66:191–201CrossRefGoogle Scholar
  71. Yin CH, Feng G, Zhang F, Tian CY, Tang C (2009) Enrichment of soil fertility and salinity by tamarisk in saline soils on the northern edge of the Taklamakan Desert. Agric Water Manag 97:1978–1986CrossRefGoogle Scholar
  72. Zhang J, Jiang J, Xing S (2008) Planting techniques of Tamarix chinensis and its effect on saline soil remediation. In: 2nd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2008), Shanghai, pp 4259–4261Google Scholar
  73. Zuffi D (1989) Génie Biologique - Cours sur la stabilisation végétale des talus. Inspection Cantonale des Forêts. FribourgGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Catherine Lavaine
    • 1
    • 2
    • 3
  • André Evette
    • 1
    • 2
    Email author
  • Hervé Piégay
    • 3
  1. 1.Irstea, UR EMGRCentre de GrenobleSt-Martin-d’HèresFrance
  2. 2.Univ Grenoble AlpesGrenobleFrance
  3. 3.University of Lyon, CNRS-UMR 5600LyonFrance

Personalised recommendations