Environmental Management

, Volume 55, Issue 6, pp 1262–1275 | Cite as

Impacts from Above-Ground Activities in the Eagle Ford Shale Play on Landscapes and Hydrologic Flows, La Salle County, Texas

  • Jon Paul Pierre
  • Charles J. Abolt
  • Michael H. Young
Article

Abstract

We assess the spatial and geomorphic fragmentation from the recent Eagle Ford Shale play in La Salle County, Texas, USA. Wells and pipelines were overlaid onto base maps of land cover, soil properties, vegetation assemblages, and hydrologic units. Changes to continuity of different ecoregions and supporting landscapes were assessed using the Landscape Fragmentation Tool (a third-party ArcGIS extension) as quantified by land area and continuity of core landscape areas (i.e., those degraded by “edge effects”). Results show decreases in core areas (8.7 %; ~33,290 ha) and increases in landscape patches (0.2 %; ~640 ha), edges (1.8 %; ~6940 ha), and perforated areas (4.2 %; ~16230 ha). Pipeline construction dominates landscape disturbance, followed by drilling and injection pads (85, 15, and 0.03 % of disturbed area, respectively). An increased potential for soil loss is indicated, with 51 % (~5790 ha) of all disturbance regimes occurring on soils with low water-transmission rates (depth to impermeable layer less than 50 cm) and a high surface runoff potential (hydrologic soil group D). Additionally, 88 % (~10,020 ha) of all disturbances occurred on soils with a wind erodibility index of approximately 19 kt/km2/year (0.19 kt/ha/year) or higher, resulting in an estimated potential of 2 million tons of soil loss per year. Results demonstrate that infrastructure placement is occurring on soils susceptible to erosion while reducing and splitting core areas potentially vital to ecosystem services.

Keywords

Eagle Ford Landscape impacts Fragmentation Ecosystems 

Supplementary material

267_2015_492_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Alados CL, Pueyo Y, Escós J, Andujar A (2009) Effects of the spatial pattern of disturbance on the patch-occupancy dynamics of juniper–pine open woodland. Ecol Model 220:1544–1550. doi:10.1016/j.ecolmodel.2009.03.029 CrossRefGoogle Scholar
  2. Alados CL, Puigdefábregas J, Martínez-Fernández J (2011) Ecological and socio-economical thresholds of land and plant-community degradation in semi-arid Mediterranean areas of southeastern Spain. J Arid Environ 75:1368–1376. doi:10.1016/j.jaridenv.2010.12.004 CrossRefGoogle Scholar
  3. Albrecht S, Hinkle R, Nathanson E, et al (2000) Direct relevance to the natural gas industry of the habitat fragmentation/biodiversity issue resulting from the construction of new pipelines: Topical Report. Gas Research Institute, Chicago, ILGoogle Scholar
  4. Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:93–115CrossRefGoogle Scholar
  5. Bi X, Wang B, Lu Q (2011) Fragmentation effects of oil wells and roads on the Yellow River Delta, North China. Ocean Coast Manag 54:256–264. doi:10.1016/j.ocecoaman.2010.12.005 CrossRefGoogle Scholar
  6. Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH (2014) Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ Sci Technol 48:11034–11047. doi:10.1021/es5020482 CrossRefGoogle Scholar
  7. Buchanan CB, Beck JL, Bills TE, Miller SN (2014) Seasonal resource selection and distributional response by Elk to development of a natural gas field. Rangel Ecol Manag 67:369–379. doi:10.2111/REM-D-13-00136.1 CrossRefGoogle Scholar
  8. Burnett DB, McDowell J, Scott JB, Dolan C (2011) Field site testing of low impact oil field access roads: reducing the environmental footprint in desert ecosystems. In: SPE Americas E&P health, safety, security, and environmental conference, Houston. Society of Petroleum Engineers. SPE 142139, 10. doi:10.2118/142139-MS
  9. Chas-Amil ML, Touza J, García-Martínez E (2013) Forest fires in the wildland–urban interface: a spatial analysis of forest fragmentation and human impacts. Appl Geogr 43:127–137. doi:10.1016/j.apgeog.2013.06.010 CrossRefGoogle Scholar
  10. Chen M, Rowland JC, Wilson CJ, Altmann GL, Brumby SP (2012) Temporal and spatial pattern of thermokarst lake area changes at Yukon Flats, Alaska. Hydrol Process 28:837–852. doi:10.1002/hyp.9642 CrossRefGoogle Scholar
  11. Daily GC (1997) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, p 412Google Scholar
  12. DellaSala DA, Martin A, Spivak R, Schulke T, Bird B, Criley M, van Daalen C, Kreilick J, Brown R, Aplet G (2003) A citizen’s call for ecological forest restoration principles and criteria. Ecol Restor 21:14–23CrossRefGoogle Scholar
  13. Diffendorfer JE, Compton RW (2014) Land cover and topography affect the land transformation caused by wind facilities. PLoS One 9:e88914. doi:10.1371/journal.pone.0088914 CrossRefGoogle Scholar
  14. Driskill B, Suurmeyer N, Rilling-Hall S, Govert A, Garbowicz A, Shell Exploration and Production Company (2012) Reservoir description of the subsurface Eagle Ford Formation, Maverick Basin Area, South Texas, USA. In: SPE Europec/EAGE annual conference, Copenhagen. Society of Petroleum Engineers, SPE 154528, 23. doi:10.2118/154528-MS
  15. Drohan PJ, Brittingham M (2012) Topographic and soil constraints to shale-gas development in the Northcentral Appalachians. Soil Sci Soc Am J 76:1696–1706. doi:10.2136/sssaj2012.0087 CrossRefGoogle Scholar
  16. Drohan PJ, Brittingham M, Bishop J, Yoder K (2012) Early trends in landcover change and forest fragmentation due to shale-gas development in Pennsylvania: a potential outcome for the Northcentral Appalachians. Environ Manag 49:1061–1075. doi:10.1007/s00267-012-9841-6 CrossRefGoogle Scholar
  17. Dukes RT (2014) Eagle Ford Shale Overview. Eagle Ford Shale: news, MarketPlace, Jobs. KED Interests, LLC. http://eaglefordshale.com/. Accessed 04 March 2014
  18. Entrekin S, Evans-White M, Johnson B, Hagenbuch E (2011) Rapid expansion of natural gas development poses a threat to surface waters. Front Ecol Environ 9:503–511. doi:10.1890/110053 CrossRefGoogle Scholar
  19. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206CrossRefGoogle Scholar
  20. Gong X, McVay DA, Ayers WB, Tian Y, Lee J (2013) Assessment of Eagle Ford Shale oil and gas resources. Society of Petroleum Engineers. In: SPE unconventional resources conference, SPE-167241-MS, p 26. doi:10.2118/167241-MS
  21. Goodrich LJ, Brittingham M, Bishop JA, Barber P (2004) Wildlife habitat in Pennsylvania: past, present, and future. Pennsylvania Department of Conservation and Natural Resources, Philadelphia, p 236Google Scholar
  22. Haila Y (2002) A conceptual genealogy of fragmentation research: from island biogeography to landscape ecology. Ecol Appl 12:321–334Google Scholar
  23. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogramm Eng Remote Sens 73:337–341Google Scholar
  24. Horizon Systems Corporation (2013) NHDPlus Home. http://www.horizon-systems.com/NHDPlus/index.php. Accessed 02 Oct 2013
  25. Horta e Costa B, Batista MI, Gonçalves L, Erzini K, Caselle JE, Cabral HN, Gonçalves EJ (2013) Fishers’ behaviour in response to the implementation of a marine protected area. PLoS One 8:e65057. doi:10.1371/journal.pone.0065057 CrossRefGoogle Scholar
  26. Howell CA, Dijak WD, Thompson FR (2006) Landscape context and selection for forest edge by breeding brown-headed cowbirds. Landsc Ecol 22:273–284. doi:10.1007/s10980-006-9022-1 CrossRefGoogle Scholar
  27. Information Handling Services, Inc. (2013) IHS: information, analytics, expertise. http://www.ihs.com/index.aspx. Accessed 23 May 2013
  28. John R, Chen J, Lu N, Wilske B (2009) Land cover/land use change in semi-arid Inner Mongolia: 1992–2004. Environ Res Lett 4:045010. doi:10.1088/1748-9326/4/4/045010 CrossRefGoogle Scholar
  29. Johnson N (2010) Pennsylvania energy impacts assessment. The Nature Conservancy, Harrisburg, PA. http://www.nature.org/media/pa/tnc_energy_analysis.pdf. Accessed 10 March 2014
  30. Kalyn Bogard HJ, Davis SK (2014) Grassland songbirds exhibit variable responses to the proximity and density of natural gas wells. J Wildl Manag 78:471–482. doi:10.1002/jwmg.684 CrossRefGoogle Scholar
  31. Kiviat E (2013) Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales. Ann N Y Acad Sci 1286:1–14. doi:10.1111/nyas.12146 CrossRefGoogle Scholar
  32. Krauss RF (2013) Addressing well and field infrastructure siting challenges in the Wetlands and Streams of the Haynesville, Marcellus, Utica, and Eagle Ford Shale Plays. In: SPE Americas E&P health, safety, security and environmental conference, Society of Petroleum Engineers, p 8Google Scholar
  33. Linke J, Franklin SE, Huettmann F, Stenhouse GB (2005) Seismic cutlines, changing landscape metrics and grizzly bear landscape use in Alberta. Landsc. Ecol 20:811–826. doi:10.1007/s10980-005-0066-4 CrossRefGoogle Scholar
  34. Lowe CH (1985) Amphibians and reptiles in Southwest riparian ecosystems. U.S. Forest Service General Technical Report RM-120. In: First North American Riparian conference, Tucson, p 3Google Scholar
  35. Martin R, Baihly J, Malpani R, Lindsay G, Atwood WK, Schlumberger (2011) Understanding production form Eagle Ford-Austin Chalk system. Soc Pet Eng 145117:28Google Scholar
  36. McGarigal K, Cushman S, Regan, C (2005) Quantifying terrestrial habitat loss and fragmentation: a protocol: US For Serv Gen Tech Repl RM-GTR, p 115Google Scholar
  37. Mitchell A (2005) The ESRI guide to GIS analysis: spatial measurements and statistics. ESRI Press, Redlands, p 252Google Scholar
  38. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23CrossRefGoogle Scholar
  39. Neel MC, McGarigal K, Cushman SA (2004) Behavior of class-level landscape metrics across gradients of class aggregation and area. Landsc Ecol 19:435–455CrossRefGoogle Scholar
  40. Niu X, Duiker SW (2006) Carbon sequestration potential by afforestation of marginal agricultural land in the Midwestern U.S. For Ecol Manag 223:415–427. doi:10.1016/j.foreco.2005.12.044 CrossRefGoogle Scholar
  41. Olmstead SM, Muehlenbachs LA, Shih J-S, Chu Z, Krupnick AJ (2013) Shale gas development impacts on surface water quality in Pennsylvania. Proc Natl Acad Sci 110:4962–4967. doi:10.1073/pnas.1213871110 CrossRefGoogle Scholar
  42. Pack W (2012) The years of Eagle Ford expected to be a sweet 16 at least. Houston Chronicle 2. http://www.chron.com/business/energy/article/The-years-of-Eagle-Ford-expected-to-be-a-sweet-16-3920669.php. Accessed 30 April 2014
  43. Pardini R, de Arruda Bueno A, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5:e13666. doi:10.1371/journal.pone.0013666 CrossRefGoogle Scholar
  44. Parent J, Hurd JD (2007) Landscape Fragmentation Tool v 2.0. The University of Connecticut, Center for Land Use Education and Research. http://clear.uconn.edu/tools/lft/lft2/index.htm. Accessed 22 Sep 2013
  45. Porter JR, Howell FM, Mason PB, Blanchard TC (2009) Existing biomass infrastructure and theoretical potential biomass production in the US. J Maps 5:206–218. doi:10.4113/jom.2009.1067 CrossRefGoogle Scholar
  46. Railroad Commission of Texas (2013) Pipelines Shapefile dataset. http://www.rrc.state.tx.us/aboutus/resource-center/research/data-sets-available-for-purchase/digital-map-data/. Accessed June 2013
  47. Railroad Commission of Texas (2014) http://www.rrc.state.tx.us/. Accessed 03 April 2014
  48. Ravi S, D’Odorico P, Breshears DD, Field JP, Goudie AS, Huxman TE, Li J, Okin GS, Swap RJ, Thomas AD, Whicker JJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49:RG3001. doi:10.1029/2010RG000328 CrossRefGoogle Scholar
  49. Roberts SA, Hall GB, Calamai PH (2000) Analysing forest fragmentation using spatial autocorrelation, graphs and GIS. Int J Geogr Inf Sci 14:185–204CrossRefGoogle Scholar
  50. Robson BJ, Chester ET, Austin CM (2011) Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Mar Freshw Res 62:801–810CrossRefGoogle Scholar
  51. Saiz H, Alados CL (2011) Effect of Stipa tenacissima L. on the structure of plant co-occurrence networks in a semi-arid community. Ecol Res 26:595–603. doi:10.1007/s11284-011-0818-3 CrossRefGoogle Scholar
  52. Scanlon BR, Reedy RC, Nicot J-P (2014) Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays? Environ Res Lett 9:124011. doi:10.1088/1748-9326/9/12/124011 CrossRefGoogle Scholar
  53. Skousen JG, Johnson CD, Garbutt K (1994) Natural revegetation of 15 abandoned mine land sites in West Virginia. J Environ Qual 23:1224–1230. doi:10.2134/jeq1994.00472425002300060015x CrossRefGoogle Scholar
  54. Smith FS, Lloyd-Reilley J, Ocumpaugh WR (2010) South Texas natives: a collaborative regional effort to meet restoration needs in South Texas. Nativ Plants J 11:252–268CrossRefGoogle Scholar
  55. Soil Survey Staff (1993) Soil survey manual. Agric. Handbook No. 18, USDA-NRCS, U.S. Gov. Print. Office, Washington, DCGoogle Scholar
  56. Soil Survey Staff (20130) Natural Resources Conservation Service, United States Department of Agriculture. http://websoilsurvey.nrcs.usda.gov/. Accessed 21 June 2013
  57. Svobodová J, Kreisinger J, Šálek M, Koubová M, Albrecht T (2010) Testing mechanistic explanations for mammalian predator responses to habitat edges. Eur J Wildl Res 57:467–474. doi:10.1007/s10344-010-0455-0 CrossRefGoogle Scholar
  58. Thuot K (2014) On the launch pad: the rise of pad drilling. Drilling info. http://info.drillinginfo.com/launch-pad-rise-pad-drilling/. Accessed 03 April 2014
  59. TPWD (Texas Parks and Wildlife Department) (2013) Voluntary conservation practices: balancing wildlife conservation and oil and gas development in the Eagle Ford Shale region, p 4Google Scholar
  60. Tunstall T, Oyakawa J, Roberts S, Eid H, Abalos R, Wang T, Calderon E, Melara K (2013) Economic impact of the Eagle Ford Shale. The University of Texas at San Antonio, Institute for Economic Development, Center for Community and Business Research, San Antonio, p 88Google Scholar
  61. United States Geological Survey (2013) USGS National elevation dataset. http://ned.usgs.gov/. Accessed 6 Jun 2013
  62. U.S. Department of Agriculture Aerial Photography Field Office (2012) National agriculture imagery program (NAIP). http://www.fsa.usda.gov/FSA/apfoapp?area=home&subject=prod&topic=landing. Downloaded June 2013
  63. U.S. Government Accountability Office (2012) Oil and gas: information on shale resources, development, and environmental and public health risks. GAO-12-732 70, p 65Google Scholar
  64. USDA (2009) Hydrologic soil groups. Chapter 7, Part 630. Hydrology. National engineering handbook. City. http://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=22526.wba. 13
  65. USDA/NRCS (2014) National Geospatial Center of Excellence. http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/ngce/. Accessed 21 June 2013
  66. USDA/NRCS, National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail//?cid=nrcs142p2_054242. Accessed 12 Dec 2014
  67. Vogt P, Riitters KH, Estreguil C, Kozak J, Wade TG, Wickham JD (2006) Mapping spatial patterns with morphological image processing. Landsc Ecol 22:171–177. doi:10.1007/s10980-006-9013-2 CrossRefGoogle Scholar
  68. Wachal DJ, Banks KE, Hudak PF, Harmel RD (2009) Modeling erosion and sediment control practices with RUSLE 2.0: a management approach for natural gas well sites in Denton County, TX, USA. Environ Geol 56:1615–1627. doi:10.1007/s00254-008-1259-3 CrossRefGoogle Scholar
  69. Wu J (2009) Ecological dynamics in fragmented landscapes. In: Levin SA (ed) Princeton guide to ecology. Princeton University Press, Princeton, pp 438–444Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jon Paul Pierre
    • 1
    • 2
  • Charles J. Abolt
    • 2
    • 3
  • Michael H. Young
    • 2
  1. 1.Energy and Earth Resources Program, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  3. 3.Department of Geological Sciences, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations