Environmental Management

, Volume 55, Issue 6, pp 1377–1389 | Cite as

Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas

  • Camila S. Castilho
  • Vivian C. S. Hackbart
  • Vânia R. Pivello
  • Rozely F. dos Santos


Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars’ priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.


Carnivore conservation Cougars Jaguars Permeability Riparian Forest Environmental planning 



The authors acknowledge the support received from FAPESP (Fundação de Amparo à Pesquisa do Estado de São) in the form of scholarship and financial support (process 2011/10.791-0) and to the Secretaria do Meio Ambiente do Estado de São Paulo-SMA for allowing the use of satellite images. We also thank Agustín J. Paviolo, Ph.D.; Beatriz M. Beisiegel, Ph.D.; Carlos D. De Angelo, Ph.D.; Peter G. Crawshaw Jr., Ph.D.; Renata A. Miotto, Ph.D.; Rogério C. de Paula, M.Sc. and Ronaldo G. Morato, Ph.D. for participating as consultant specialists.

Ethical Statement

Funding: This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (Grant Number 2011/10.791-0).

Conflict of Interest

The authors declare that they have no conflict of interest.

Studies with Human Participants or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

267_2015_463_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 54 kb)


  1. Baudry J, Merriam HG (1988) Connectivity and connectedness: functional versus structural patterns in landscapes. Schreiber, K.F. (ed) Connectivity in landscape ecology. In: Proceedings of the 2nd international seminar of the “international association for landscape ecology” Münster 1987. Ferdinand Schöningh – Paderborn, pp. 23–28Google Scholar
  2. Beier P (1993) Determining minimum habitat areas and habitat corridors for cougar. Conserv Biol 7:94–108CrossRefGoogle Scholar
  3. Beier P, Choate D, Barret RH (1995) Movement patterns of mountain lions during different behaviors. J Mammal 76:1056–1070CrossRefGoogle Scholar
  4. Beier P, Majka DR, Newell SL (2009) Uncertainty analysis of least-cost modeling for designing wildlife linkages. Ecol Appl 19:2067–2077CrossRefGoogle Scholar
  5. Bressan PM, Kierulff MCM, Sugieda AM (2009) Fauna Ameaçada de Extinção no Estado de São Paulo: Vertebrados. FPZSP & SMA, São PauloGoogle Scholar
  6. Chapin F, Matson P, Vitousek P (2012) Landscape Heterogeneity and Ecosystem Dynamics. Principles of terrestrial ecosystem ecology. Springer, Berlin, pp 369–397CrossRefGoogle Scholar
  7. Cherem JJ, Graipel ME, Tortato M, Althoff S, Brüggemann F, Matos J, Voltolini JC, Freitas R, Illenseer R, Hoffmann F, Ghizoni IR Jr, Bevilacqua A, Reinicke R, Salvador CH, Filipini A, Furnari N, Abati K, Moraes M, Moreira T, Oliveira-Santos LGR, Kuhnen V, Maccarini T, Goulart F, Mozerle H, Fantacini F, Dias D, Penedo-Ferreira R, Vieira BP, Simões-Lopes PC (2011) Mastofauna terrestre do Parque Estadual da Serra do Tabuleiro Estado de Santa Catarina sul do Brasil. Biotemas 24:73–84CrossRefGoogle Scholar
  8. Clevenger AP, Wierzchowski J, Chruszcz B, Gunson K (2002) GIS-Generated, expert-based models for identifying wildlife habitat linkages and planning mitigation passages. Conserv Biol 16:503–514CrossRefGoogle Scholar
  9. Cullen L Jr, Abreu KC, Sana D, Nava AFD (2005) As onças-pintadas como detetives da paisagem no corredor do Alto Paraná, Brasil. Nat Conserv 3:43–58Google Scholar
  10. Cullen L Jr, Sana DA, Lima F, Abreu KC, Uezu A (2013) Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zoologia 30:379–387CrossRefGoogle Scholar
  11. De Angelo C, Paviolo A, Rode D, Cullen L Jr, Sana D, Cachuba K, Silva MX, Bertrand A, Haag T, Lima F, Rinaldi AR, Fernandéz S, Ramírez F, Velázquez M, Corio C, Hasson E, Di Bitetti MS (2011a) Participatory networks for large-scale monitoring of large carnivores pumas and jaguar of the Upper Parana Atlantic Forest. Oryx 45:534–545CrossRefGoogle Scholar
  12. De Angelo C, Paviolo A, Di Bitetti M (2011b) Differential impact of landscape transformation on pumas (Puma concolor) and jaguar (Panthera onca) in the Upper Paraná Atlantic Forest. Divers Distrib 17:422–436CrossRefGoogle Scholar
  13. Di Minin E, Hunter LTB, Balme GA, Smith RJ, Goodman PS, Slotow R (2013) Creating larger and better connected protected areas enhances the persistence of big game species in the Maputaland-Pondoland-Albany biodiversity hotspot. Plos One 8:1–14CrossRefGoogle Scholar
  14. Dickson BG, Beier P (2002) Home-range and habitat selection by adult cougar in southern California. J Wildl Manage 6640:1235–1245CrossRefGoogle Scholar
  15. Dickson BG, Beier P (2007) Quantifying the influence of topographic position on cougar (Puma concolor) movement in southern California, USA. J Zool 271:270–277Google Scholar
  16. Dickson BG, Jenness JS, Beier P (2005) Influence of vegetation, topography, and roads on cougar movement in southern California. J Wildl Manage 69:264–276CrossRefGoogle Scholar
  17. Doswald N, Zimmermann F, Breitenmoser U (2007) Testing expert groups for a habitat suitability model for the lynx Lynx lynx in the Swiss Alps. Wildl Biol 13:430–446CrossRefGoogle Scholar
  18. Ferraz KMPMB, Biesiegel BM, De Paula RC, Sana DA, Campos CB, Oliveira TG, Desbiez ALJ (2012) How species distribution models can improve cat conservation – jaguar in Brazil. CAT News 7:38–42 Special IssueGoogle Scholar
  19. MMA, Fundação Biodiversitas (2008) Livro vermelho da fauna brasileira ameaçada de extinção. Machado ABM, Drummond GM, Paglia AP (eds). Brasília/DF, Belo Horizonte/MGGoogle Scholar
  20. Galetti M, Eizirik E, Beisiegel B, Ferraz K, Cavalcanti S, Srbek-Araujo AC, Crawshaw P, Paviolo A, Galetti PM Jr, Jorge ML, Marinho-Filho J, Vercillo U, Morato R (2013) Atlantic rainforest’s Jaguar in decline. Science 342:930CrossRefGoogle Scholar
  21. Garmendia A, Arroyo-Rodríguez V, Estrada A, Naranjo EJ, Stoner KE (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29:331–344CrossRefGoogle Scholar
  22. Goh CH, Tung YCA, Cheng CH (1996) A revised weighted sum decision model for robot selection. Comput Ind Eng 30:193–199CrossRefGoogle Scholar
  23. Gustafson EJ, Parker GR (1992) Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol 7:101–110CrossRefGoogle Scholar
  24. IUCN (2013) IUCN Red List of Threatened Species. Version 2013.1. Acessed 26 Sep 2013
  25. Kertson BN, Spenser RD, Marzluff JM, Hepinstall-Cymerman J, Grue CE (2011) Cougar space use and movements in the wildland–urban landscape of western. Wash Ecol Appl 21:2866–2881CrossRefGoogle Scholar
  26. LaRue MA, Nielsen CK (2008) Modelling potential dispersal corridors for cougar in Midwestern North America using least-cost path methods. Ecol Model 212:372–381CrossRefGoogle Scholar
  27. LaRue MA, Nielsen CK (2011) Modelling potential habitat for cougar in midwestern North America. Ecol Model 222:897–900CrossRefGoogle Scholar
  28. Legendre P, Legendre L (1998) Numerical Ecology. Elselvier, QuebécGoogle Scholar
  29. Lyra-Jorge MA, Ciocheti G, Pivello VR (2008) Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodiv Conserv 17:1573–1580CrossRefGoogle Scholar
  30. Mazzolli M (1993) Ocorrência de Puma concolor (Linnaeus) (Felidae, Carnívora) em áreas de vegetação remanescente de Santa Catarina, Brasil. Rev Bras Zool 10:581–587CrossRefGoogle Scholar
  31. Mazzolli M (2010) Mosaics of exotic forest plantations and native forests as habitat of pumas. Environ Manag 46:237–253CrossRefGoogle Scholar
  32. Mazzolli M, Hammer LA (2008) Qualidade de ambiente para a onça-pintada, puma e jaguatirica na Baía de Guaratuba, Estado do Paraná, utilizando os aplicativos Capture e Presence. Biotemas 21:105–117CrossRefGoogle Scholar
  33. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561CrossRefGoogle Scholar
  34. McRae BH (2012) Pinchpoint mapper connectivity analysis software. The Nature Conservancy, Seattle.
  35. McRae BH, Kavanagh DM (2011) Linkage mapper connectivity analysis software. The Nature Conservancy, Seattle.
  36. McRae BH, Kavanagh DM (2013) Linkage Mapper User Guide.
  37. McRae BH, Shah VB (2009) Circuitscape user’s guide. ONLINE. The University of California, Santa Barbara. Accessed 25 Sept 2014
  38. McRae BH, Shah VB (2011) Circuitscape User Guide. The University of California, Santa Barbara.
  39. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 10:2712–2724CrossRefGoogle Scholar
  40. Metzger JP (2010) O Código Florestal tem Base Científica? Nat Conserv 8:92–99CrossRefGoogle Scholar
  41. Miotto RA, Cervini M, Begotti RA, Galetti PM Jr (2012) Monitoring a Puma (Puma concolor) population in a fragmented landscape in southeast Brazil. Biotropica 44:98–104CrossRefGoogle Scholar
  42. Newmark WD (1995) Extinction of mammal populations in western North American national parks. Conserv Biol 9:512–526CrossRefGoogle Scholar
  43. Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conserv Biol 4:355–364CrossRefGoogle Scholar
  44. Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143:939–945CrossRefGoogle Scholar
  45. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FG, Hirota MM (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  46. Rodríguez-Soto C, Monroy-Vilchis O, Maiorano L, Boitani L, Faller JC, Briones MÁ et al (2011) Predicting potential distribution of the Panthera onca in Mexico: Identification of priority areas for conservation. Divers Distrib 17:350–361CrossRefGoogle Scholar
  47. Rodríguez-Soto C, Monroy-Vilchis O, Zarco-González MM (2013) Corridors for jaguar (Panthera onca) in Mexico: conservation strategies. J Nat Conserv 21:438–443CrossRefGoogle Scholar
  48. Shumaker NH (1996) Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225CrossRefGoogle Scholar
  49. Silveira L, Sollmann R, Jácomo ATA, Diniz Filho JA, Tôrres NM (2014) The potential for large-scale wildlife corridors between protected areas in Brazil using the jaguar as a model. Landsc Ecol 29:1213–1223CrossRefGoogle Scholar
  50. Sollmann R, Tôrres NM, Silveira L (2008) Jaguar conservation in Brazil: the role of protected areas. CAT News 4:15–20Google Scholar
  51. Soulé M, Noss R (1998) Rewilding and biodiversity: complementary goals for continental conservation. Wild Earth 8:8–28Google Scholar
  52. Sparovek G, Ranieri SBL, Gassner A, De Maria IC, Schnug E, Santos RF, Joubert A (2002) A conceptual framework for definition of the optimal width of riparian forests. Agric Ecosyst Environ 90:169–175CrossRefGoogle Scholar
  53. Terra TN, Santos RF (2012) Measuring cumulative effects in a fragmented landscape. Ecol Model 228:89–95CrossRefGoogle Scholar
  54. Thatcher CA, Van Manen FT, Clark JD (2006) Identifying suitable sites for Florida panther reintroduction. J Wildl Manag 70:752–763CrossRefGoogle Scholar
  55. Thatcher CA, Van Manen FT, Clark JD (2009) A habitat assessment for Florida panther population expansion into Central Florida. J Mammal 90:918–925CrossRefGoogle Scholar
  56. Zarco-González MA, Monroy-Vilchis O, Alaníz J (2013) Spatial model of live-stock predation by jaguar and puma in Mexico: conservation planning. Biol Conserv 159:80–87CrossRefGoogle Scholar
  57. Zeller KA, Nijhawan S, Salom-Pérez R, Potosme SH, Hines JE (2011) Integrating occupancy modeling and interview data for corridor identification: a case study for jaguar in Nicarágua. Biolo Conserv 144:892–901CrossRefGoogle Scholar
  58. Zúñiga A, Muñoz-Pedreros A, Fierro A (2009) Uso de habitat de cuatro carnivoros terrestres en el sur del Chile. Gayana 73:200–210Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Camila S. Castilho
    • 1
  • Vivian C. S. Hackbart
    • 1
  • Vânia R. Pivello
    • 1
  • Rozely F. dos Santos
    • 1
  1. 1.Laboratório de Ecologia da Paisagem e Conservação, Departamento de EcologiaUniversidade de São PauloSão PauloBrazil

Personalised recommendations