Advertisement

Environmental Management

, Volume 55, Issue 3, pp 578–587 | Cite as

Classifying Lakes to Quantify Relationships Between Epilimnetic Chlorophyll a and Hypoxia

  • Lester L. YuanEmail author
  • Amina I. Pollard
Article

Abstract

Excess nutrient loading increases algal abundance which can cause hypoxia in many lakes and reservoirs. We used a divisive partitioning approach to analyze dissolved oxygen profile data collected across the continental United States to increase the precision of estimated relationships between chlorophyll a (chl a) concentrations and the extent of hypoxia in the water column. Chl a concentrations predicted the extent of hypoxia most accurately in lakes that were stratified at the time of sampling with a maximum temperature gradient of at least 1.2 °C/m. Lake elevation, Secchi depth, and lake geometry ratio further refined the specification of groups of lakes with different relationships between chl a and the extent of hypoxia. The statistical relationships between chl a and the extent of hypoxia that were estimated can be used directly for setting management thresholds for chl a in particular types of lakes.

Keywords

Lake Hypoxia Chlorophyll a Stressor-response Classification 

Notes

Acknowledgments

The authors thank B. Walsh and S. Whitlock for reviewing an earlier draft of this paper. The views expressed in this paper are those of the authors and do not reflect the policy of the US Environmental Protection Agency.

References

  1. Alexander WP, Grimshaw SD (1996) Treed regression. J Comput Graph Stat 5:156–175. doi: 10.1080/10618600.1996.10474702 Google Scholar
  2. Bella DA (1970) Dissolved oxygen variations in stratified lakes. J Sanit Eng Div 96:1129–1146Google Scholar
  3. Bergström A-K, Jansson M (2000) Bacterioplankton production in humic lake örträsket in relation to input of bacterial cells and input of allochthonous organic carbon. Microb Ecol 39:101–115. doi: 10.1007/s002480000007 CrossRefGoogle Scholar
  4. Borsuk ME, Higdon D, Stow CA, Reckhow KH (2001) A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecol Model 143:165–181. doi: 10.1016/S0304-3800(01)00328-3 CrossRefGoogle Scholar
  5. Bowman GT, Delfino JJ (1980) Sediment oxygen demand techniques: a review and comparison of laboratory and in situ systems. Water Res 14:491–499. doi: 10.1016/0043-1354(80)90215-8 CrossRefGoogle Scholar
  6. Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  7. Carpenter SR, Kitchell JF, Pace ML (2002) Pathways of organic carbon utilization in small lakes: results from a whole-lake 13C addition and coupled model. Limnol Ocean 47:1664–1675CrossRefGoogle Scholar
  8. Carvalho L, Solimini A, Phillips G et al (2008) Chlorophyll reference conditions for European lake types used for intercalibration of ecological status. Aquat Ecol 42:203–211. doi: 10.1007/s10452-008-9189-4 CrossRefGoogle Scholar
  9. Chapra SC, Canale RP (1991) Long-term phenomenological model of phosphorus and oxygen for stratified lakes. Water Res 25:707–715. doi: 10.1016/0043-1354(91)90046-S CrossRefGoogle Scholar
  10. Chipman HA, George EI, McCulloch RE (1998) Bayesian CART model search. J Am Stat Assoc 93:935. doi: 10.2307/2669832 CrossRefGoogle Scholar
  11. Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. Cross TK, Summerfelt RC (1987) Oxygen demand of lakes: sediment and water column bod. Lake Reserv Manag 3:109–116. doi: 10.1080/07438148709354766 CrossRefGoogle Scholar
  13. Daly C, Halbleib M, Smith JI et al (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064. doi: 10.1002/joc.1688 CrossRefGoogle Scholar
  14. Del Giorgio PA, le Williams PJB (eds) (2005) Respiration in aquatic ecosystems. Oxford University Press, OxfordGoogle Scholar
  15. Di Toro DM, Fitzpatrick JJ, Thomann RV (1983) Documentation for water quality analysis simulation program (WASP) and model verification program (MVP). http://udspace.udel.edu/handle/19716/1450. Accessed 21 Aug 2014
  16. Gakstatter JH, Allum MO, Omernik JM (1976) Lake eutrophication: results from the national eutrophication survey. Environmental Protection Agency, U.SGoogle Scholar
  17. Gorham E, Boyce FM (1989) Influence of lake surface area and depth upon thermal stratification and the depth of the summer thermocline. J Gt Lakes Res 15:233–245. doi: 10.1016/S0380-1330(89)71479-9 CrossRefGoogle Scholar
  18. Hamilton DP, Schladow SG (1997) Prediction of water quality in lakes and reservoirs. Part I: model description. Ecol Model 96:91–110. doi: 10.1016/S0304-3800(96)00062-2 CrossRefGoogle Scholar
  19. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New YorkCrossRefGoogle Scholar
  20. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451. doi: 10.1046/j.1365-2427.2001.00687.x CrossRefGoogle Scholar
  21. Jones JR, Knowlton MF (2005) Chlorophyll response to nutrients and non-algal seston in Missouri reservoirs and oxbow lakes. Lake Reserv Manag 21:361–371. doi: 10.1080/07438140509354441 CrossRefGoogle Scholar
  22. Jones JR, Knowlton MF, Obrecht DV, Graham JL (2011) Temperature and oxygen in Missouri reservoirs. Lake Reserv Manag 27:173–182. doi: 10.1080/07438141.2011.583713 CrossRefGoogle Scholar
  23. Kelly CA, Rudd JWM, Furutani A, Schindler DW (1984) Effects of lake acidification on rates of organic matter decomposition in sediments. Limnol Oceanogr 29:687–694CrossRefGoogle Scholar
  24. Livingstone DM, Imboden DM (1996) The prediction of hypolimnetic oxygen profiles: a plea for a deductive approach. Can J Fish Aquat Sci 53:924–932. doi: 10.1139/f95-230 CrossRefGoogle Scholar
  25. Livingstone DM, Lotter AF, Walker IR (1999) The decrease in summer surface water temperature with altitude in Swiss Alpine lakes: a comparison with air temperature lapse rates. Arct Antarct Alp Res 31:341. doi: 10.2307/1552583 CrossRefGoogle Scholar
  26. McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall/CRC, Boca RatonCrossRefGoogle Scholar
  27. Molot LA, Dillon PJ, Clark BJ, Neary BP (1992) Predicting end-of-summer oxygen profiles in stratified lakes. Can J Fish Aquat Sci 49:2363–2372. doi: 10.1139/f92-260 CrossRefGoogle Scholar
  28. Nürnberg GK (1995) Quantifying anoxia in lakes. Limnol Oceanogr 40:1100–1111CrossRefGoogle Scholar
  29. Reckhow KH (1988) Empirical models for trophic state in Southeastern US lakes and reservoirs. JAWRA J Am Water Resour Assoc 24:723–734. doi: 10.1111/j.1752-1688.1988.tb00923.x CrossRefGoogle Scholar
  30. Rippey B, McSorley C (2009) Oxygen depletion in lake hypolimnia. Limnol Ocean 54:905–916CrossRefGoogle Scholar
  31. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10:126–139. doi: 10.1065/espr2002.12.142 CrossRefGoogle Scholar
  32. Stefan HG, Fang X (1994) Dissolved oxygen model for regional lake analysis. Ecol Model 71:37–68. doi: 10.1016/0304-3800(94)90075-2 CrossRefGoogle Scholar
  33. Stefan HG, Hondzo M, Fang X et al (1996) Simulated long-term temperature and dissolved oxygen characteristics of lakes in the north-central United States and associated fish habitat limits. Limnol Oceanogr 41:1124–1135CrossRefGoogle Scholar
  34. Tibshirani R, Knight K (1999) Model search by bootstrap “bumping”. J Comput Graph Stat 8:671–686. doi: 10.1080/10618600.1999.10474842 Google Scholar
  35. Us EPA (2006) Survey of the nation’s lakes. Laboratory methods manual. Office of Water and Office of Research and Development, WashingtonGoogle Scholar
  36. Us EPA (2010) National lakes assessment: a collaborative survey of the nation’s lakes. Office of Water and Office of Research and Development, WashingtonGoogle Scholar
  37. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105:15452–15457. doi: 10.1073/pnas.0803833105 CrossRefGoogle Scholar
  38. Vuorenmaa J, Forsius M, Mannio J (2006) Increasing trends of total organic carbon concentrations in small forest lakes in Finland from 1987 to 2003. Sci Total Environ 365:47–65. doi: 10.1016/j.scitotenv.2006.02.038 CrossRefGoogle Scholar
  39. Walker WW (1979) Use of hypolimnetic oxygen depletion rate as a trophic state index for lakes. Water Resour Res 15:1463–1470. doi: 10.1029/WR015i006p01463 CrossRefGoogle Scholar
  40. Walker R, Snodgrass W (1986) Model for sediment oxygen demand in lakes. J Environ Eng 112:25–43. doi: 10.1061/(ASCE)0733-9372(1986)112:1(25) CrossRefGoogle Scholar
  41. Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic Press, San DiegoGoogle Scholar
  42. Yuan LL, Pollard AI (2014) Classifying lakes to improve precision of nutrient–chlorophyll relationships. Freshw Sci 33:1184–1194. doi: 10.1086/678465 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2014

Authors and Affiliations

  1. 1.Office of Science and Technology, Office of WaterU.S. Environmental Protection AgencyWashingtonUSA
  2. 2.Office of Wetlands, Oceans, and Watersheds, Office of WaterU.S. Environmental Protection AgencyWashingtonUSA

Personalised recommendations