Environmental Management

, Volume 54, Issue 4, pp 744–755 | Cite as

Cautious but Committed: Moving Toward Adaptive Planning and Operation Strategies for Renewable Energy’s Wildlife Implications

  • Johann KöppelEmail author
  • Marie Dahmen
  • Jennifer Helfrich
  • Eva SchusterEmail author
  • Lea Bulling


Wildlife planning for renewable energy must cope with the uncertainties of potential wildlife impacts. Unfortunately, the environmental policies which instigate renewable energy and those which protect wildlife are not coherently aligned—creating a green versus green dilemma. Thus, climate mitigation efforts trigger renewable energy development, but then face substantial barriers from biodiversity protection instruments and practices. This article briefly reviews wind energy and wildlife interactions, highlighting the lively debated effects on bats. Today, planning and siting of renewable energy are guided by the precautionary principle in an attempt to carefully address wildlife challenges. However, this planning attitude creates limitations as it struggles to negotiate the aforementioned green versus green dilemma. More adaptive planning and management strategies and practices hold the potential to reconcile these discrepancies to some degree. This adaptive approach is discussed using facets of case studies from policy, planning, siting, and operational stages of wind energy in Germany and the United States, with one case showing adaptive planning in action for solar energy as well. This article attempts to highlight the benefits of more adaptive approaches as well as the possible shortcomings, such as reduced planning security for renewable energy developers. In conclusion, these studies show that adaptive planning and operation strategies can be designed to supplement and enhance the precautionary principle in wildlife planning for green energy.


Wildlife planning Renewable energy Adaptive management Precautionary principle Wind energy and wildlife impacts 



We would like to thank California Secretary of Natural Resources John Laird and Deputy Secretary of Climate Change Ann Chan, for providing comments regarding the DRECP. The review section on bats was compiled as part of research supported by the German Federal Ministry for Economic Affairs and Energy on the basis of a decision by the German Bundestag. Roel May and two anonymous referees provided valuable comments that helped to improve this article.


  1. Ahlén I (2003) Wind turbines and bats—a pilot study. Final report 11 December 2003. Uppsala, Sweden. Accessed 11 June 2013
  2. Ahlén I, Baagøe HJ (2013) Bats and wind power—investigations required for risk assessment in Denmark and Sweden. In: Naturvårdsverket (ed) Book of Abstracts. Conference on Wind Power and Environmental Impacts Stockholm 5–7 February, Stockholm, Sweden, p 30Google Scholar
  3. Ahlén I, Baagøe HJ, Bach L (2009) Behavior of scandinavian bats during migration and foraging at sea. J Mammal 90(6):1318–1323CrossRefGoogle Scholar
  4. Albrecht K, Grünfelder C (2011) Fledermäuse für die Standortplanung von Windenergieanlagen erfassen. Erhebungen in kollisionsrelevanten Hoehen mit einem Heliumballon. Nat schutz Landsch plan 43 (1):5–14Google Scholar
  5. Amorim F, Rebelo H, Rodrigues L (2012) Factors influencing bat activity and mortality at a wind farm in the mediterranean region. Acta Chiropterologica 14(2):439–457CrossRefGoogle Scholar
  6. Arnett EB, Hayes JP, Huso MMP (2006) An evaluation of the use of acoustic monitoring to predict bat fatality at a proposed wind facility in southcentral Pennsylvania. An annual report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USAGoogle Scholar
  7. Arnett EB, Huso MMP, Reynolds SD, Schirmacher MR (2007) Patterns of pre-construction bat activity at a proposed wind facility in northwest Massachusetts. An annual report submitted to the Bats and Wind Energy Cooperative, Austin, Texas, USA. Accessed 16 Sept 2013
  8. Arnett EB, Brown WK, Erickson WP, Fiedler JK, Hamilton BL, Henry TH, Jain A, Johnson GD, Kerns J, Koford RR, Nicholson CP, O’Connell TJ, Piorkowski MD, Tankersley RD (2008) Patterns of bat fatalities at wind energy facilities in North America. J Wildl Manag 72(1):61–78CrossRefGoogle Scholar
  9. Arnett EB, Hein CD, Patterson R (2011) Synthesis of activities (2004–2011). Key findings and next steps. The Bats and Wind Energy Cooperative. Bat Conservation International. Accessed 05 Aug 2013
  10. Baerwald EF, D’Amours GH, Klug BJ, Barclay R, Barclay (2008) Barotrauma is a significant cause of bat fatalities at wind turbines. Curr Biol 18(16):R695CrossRefGoogle Scholar
  11. Baerwald EF, Edworthy J, Holder M, Barclay RMR (2009) A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J Wildl Manag 73(7):1077–1081CrossRefGoogle Scholar
  12. Barclay R, Harder LM (2003) Life histories of bats: life in the slow lane. In Kunz TH, Brock Fenton M (eds) Bat ecology. Chicago, Illinois, USA: Univ. of Chicago Press:209–253Google Scholar
  13. Barclay R, Baerwald EF, Gruver JC (2007) Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height. Can J Zool 85(3):381–387CrossRefGoogle Scholar
  14. Bernshausen F (2012) Windenergienutzung und Rotmilanschutz—ein unüberwindbarer Konflikt? Presentation Naturschutzakademie Hessen, 28 March, Wetzlar, Germany. Accessed 05 Aug 2013
  15. BLWE (2013) Bund-Länder-Initiative Windenergie. Accessed 05 Aug 2013
  16. Boehmer-Christiansen S (1994) The precautionary principle in Germany—enabling government. In: O´Riordan T, Cameron J (eds) Interpreting the precautionary principle. Earthscan, LondonGoogle Scholar
  17. Brinkmann R, Schauer-Weisshahn H, Bontadina F (2006) Survey of possible operational impacts on bats by wind facilities in Southern Germany. Brinkmann Ecological Consultancy, FreiburgGoogle Scholar
  18. Brinkmann R, Niermann I, Behr O, Mages J, Korner-Nievergelt F, Reich M (2009) Zusammenfassung der Ergebnisse für die Planungspraxis und Ausblick. In: Fachtagung Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäu-sen an Onshore-Windenergieanlagen. Kurzfassung der Vorträge 9. Juni 2009, Hannover, Germany, p 23 et seqGoogle Scholar
  19. Brinkmann R, Behr O, Niermann I, Reich M (eds) (2011) Entwicklung von Methoden zur Untersuchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen. Ergebnisse eines Forschungsvorhabens. Göttingen: Cuvillier (Umwelt und Raum, 4)Google Scholar
  20. Camiña A (2011) The effect of wind farms on vultures in northern Spain—fatalities behaviour and correction measures. In: May R, Bevanger K (eds) Proceedings. Conference on Wind energy and Wildlife impacts 2–5 May, Trondheim, Norway NINA Report 693, p 17Google Scholar
  21. Carrete M, Sánchez-Zapata JA (2010) The precautionary principle and wind-farm planning: data scarcity does not imply absence of effects. Biol Conserv 143:829–830CrossRefGoogle Scholar
  22. Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázar JA (2009) Large-scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961CrossRefGoogle Scholar
  23. City of Göttingen (2012) Abstandsanalyse/Potentielle Windenergiestandorte—Teil-Flächennutzungsplan Windenergie. Accessed 05 Aug 2013
  24. Cordeiro A, Mascarenhas M, Costa H (2013) Long term survey of wind farms impacts on Common Kestrel`s populations and definition of an appropriate mitigation plan. In: Naturvårdsverket (ed) Book of Abstracts. Conference on Wind Power and Environmental Impacts Stockholm 5–7 February, Stockholm, Sweden, p 47Google Scholar
  25. CEQ, Council on Environmental Quality (2003) The NEPA Task Force Report to the Council on Environmental Quality, Modernizing NEPA Implementation, p 44–56. Accessed 05 Aug 2013
  26. CEQ, Council on Environmental Quality (2007) Collaboration in NEPA a handbook for NEPA practitioners. Accessed 13 Sept 2013
  27. Cryan PM (2008) Mating behavior as a possible cause of bat fatalities at wind turbines. J Wildl Manag 72(3):845–849CrossRefGoogle Scholar
  28. Cryan PM (2011) Wind turbines as landscape impediments to the migratory connectivity of bats. Environ law 41:355Google Scholar
  29. Cryan PM, Barclay RMR (2009) Causes of bat fatalities at wind turbines: hypotheses and predictions. J Mammal 90(6):1330–1340CrossRefGoogle Scholar
  30. Cryan PM, Brown AC (2007) Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol Conserv 139(1–2):1–11CrossRefGoogle Scholar
  31. Dahmen M (2012) Adaptive Management in der Umweltplanung—neue Ansätze für die Windenergie. Bachelor Thesis, TU Berlin, Environmental Assessment and Planning Research GroupGoogle Scholar
  32. De Lucas M, Ferrer M, Janss GFE (2012) Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures. PLoS One 7(11):e48092CrossRefGoogle Scholar
  33. DISP, The DRECP Independent Science Panel (2012) Final Report: Independent Science Review For The California Desert Renewable Energy Conservation Plan (DRECP) Accessed 2 Feb 2013
  34. Doty AC, Martin AP (2012) Assessment of bat and avian mortality at a pilot wind turbine at Coega, Port Elizabeth, Eastern Cape South Africa. N Z J Zool 40(1):75–80CrossRefGoogle Scholar
  35. DRECP (2013a). Accessed 1 Feb 2013
  36. DRECP (2013c) Retrieved February 2, 2013. Accessed 2 Feb 2013
  37. DRECP (2013d) Retrieved February 2, 2013. Accessed 2 Feb 2013
  38. Erdmann J (2013) Zonierung von Landschaftsschutzgebieten für die Windenergie. Master Thesis, TU Berlin, Environmental Assessment and Planning Working GroupGoogle Scholar
  39. Erickson WP, Johnson GD, Young Jr. DP (2005) A Summary and Comparison of Bird Mortality from Anthropogenic Causes with an Emphasis on Collisions. In: Ralph CJ, Rich TD (eds) (2005) Bird Conservation Implementation and Integration in the Americas: Proceedings of the Third International Partners in Flight Conference. 2002 March 20–24; Asilomar, California, Volume 2 Gen. Tech. Rep. PSW-GTR-191. Albany, CA: U.S. Dept. of Agriculture, Forest Service, Pacific Southwest Research Station: p 1029–1042Google Scholar
  40. FWS; U.S. Fish and Wildlife Service, Pennsylvania Field Office (2011) Biological Opinion. Effects of the Shaffer Mountain Wind Farm on the Indiana Bat (Myotis sodalist). Appendix A. Shaffer Mountain Wind Farm. Adaptive management plan. Accessed 8 Aug 2013
  41. Gaisler J, Rehák Z, Bartonicka T (2009) Bat casualties by road traffic (Brno-Vienna). Acta Theriol 54:147–155CrossRefGoogle Scholar
  42. Geißler G (2013) Strategic environmental assessments for renewable energy development—comparing the United States and energy. J Environ Assess Policy Manag 15:1340003 [31 p.]CrossRefGoogle Scholar
  43. Geißler G, Köppel J (2012) Upside down—Weiterentwicklung von US-amerikanischen Konzepten zur naturhaushaltlichen Kompensation. Wetland Mitigation und Conservation Banking. Nat schutz Landsch plan 44 (12): 364–370Google Scholar
  44. Geißler G, Köppel J, Gunter P (2013) Wind Energy and environmental assessments—a hard look at two forerunners´ approaches: Germany and the United States. Renew Energy 51:71–78CrossRefGoogle Scholar
  45. Grodsky SM, Behr MJ, Gendler A, Drake D, Dieterle BD, Rudd RJ, Walrath NL (2011) Investigating the causes of death for wind turbine-associated bat fatalities. J Mammal 92(5):917–925CrossRefGoogle Scholar
  46. Grodsky SM, Jennelle CS, Drake D, Virzi T (2012) Bat mortality at a wind-energy facility in southeastern Wisconsin. Wildl Soc Bull 36(4):773–783CrossRefGoogle Scholar
  47. Harlow DL (DRECP Director) (2012) Dear Stakeholders and Working Group Members. Accessed 2 Feb 2013
  48. Harremoës P, Gee D, Mac Garvin M, Stirling A, Wynne B, Vaz SG (eds) (2001) Late lessons from early warnings: the precautionary principle 1896–2000. European Environment Agency Copenhagen, Environmental Issue Report 22Google Scholar
  49. Hayes MA (2013) Bats killed in large numbers at United States wind energy facilities. Bioscience 63(12):975–979CrossRefGoogle Scholar
  50. Hein CD, Arnett EB, Schirmacher MR, Huso MMP, Reynolds DS (2011) Patterns of preconstruction bat activity at the proposed Hoosac wind energy project, Massachusetts, 2006–2007. A final project report submitted to the Bats and Wind Energy Cooperative. Bat Conservation International. Austin, Texas, USA. Accessed 16 Sept 2013
  51. Hopey D (2012) Company cancels Shaffer Mountain wind power project. Third Pa. turbine axed this month over tax credits. Pittsburgh Post-Gazette July 13, 2012. Accessed 13 Sept 2013
  52. Horn JW, Arnett EB, Kunz TH (2008) Behavioral responses of bats to operating wind turbines. J Wildl Manag 72(1):123–132CrossRefGoogle Scholar
  53. Houck DR (2012) Computational fluid dynamics simulations of bats flying near operating wind turbines: Quantification of pressure-time histories of likely flight paths. Portland State University. Available through the U.S. DOE Office of Science, Office of Workforce Development for Teachers and Scientists Application Review System (WARS)Google Scholar
  54. Hull CL, Cawthen L (2013) Bat fatalities at two wind farms in Tasmania, Australia: bat characteristics, and spatial and temporal patterns. N Z J Zool 40(1):5–15CrossRefGoogle Scholar
  55. Jackson ALR (2011) Renewable energy vs. biodiversity: policy conflicts and the future of nature conservation. Glob Environ Change 21:1195–1208CrossRefGoogle Scholar
  56. Jain A (2005) Bird and bat behavior and mortality at a northern Iowa windfarm. Master Thesis, Iowa State University, Arnes, Iowa, USA, Accessed 26 Aug 2013Google Scholar
  57. Jalava K, Pölönen I, Hokkanen P, Kuitunen M (2013) The precautionary principle and management of uncertainties in EIAs—analysis of waste incineration cases in Finland. Impact Assess Proj Apprais 31(4):280–290CrossRefGoogle Scholar
  58. Janss G, Whitfield PD, Lazo A (2010) The precautionary principle and wind-farm planning in Andalucía. Biol Conserv 143:1827–1828CrossRefGoogle Scholar
  59. Johnson GD, Erickson WP (2011) Avian, bat and habitat cumulative impacts associated with wind energy development in the Columbia Plateau ecoregion of Eastern Washington and Oregon. Prepared for Klickitat County Planning Department, Goldendale, WA. Accessed 23 May 2014
  60. Johnson GD, Erickson WP, Strickland MD, Shepherd M, Shepherd D, Sarappo S (2003) Mortality of bats at a large-scale Wind Power Development at Buffalo Ridge, Minnesota. Am Midl Nat 150(2):332–342CrossRefGoogle Scholar
  61. Johnson GD, Perlik MK, Erickson WP, Strickland MD (2004) Bat activity, composition, and collision mortality at a large wind plant in Minnesota. Wildl Soc Bull 32(4):1278–1288CrossRefGoogle Scholar
  62. Johnson JS, Watrous KS, Giumarro GJ, Peterson TS, Boyden SA, Lacki MJ (2011) Seasonal and geographic trends in acoustic detection of tree-roosting bats. Acta Chiropterologica 13(1):157–168CrossRefGoogle Scholar
  63. Jozwiak RF, Morisset DM, Schlosser TP, Somerville DT (2009) Quechan Indian Tribe’s Comments on Draft Planing Agreement, 09-Renew EO-O 1. Accessed 2 Feb 2013
  64. Kato S, Ahern J (2008) Learning by doing‘: adaptive planning as a strategy to address uncertainty in planning. J Environ Plan Manag 51(4):543–559CrossRefGoogle Scholar
  65. Kerns J, Kerlinger P (2004) A study of bird and bat collision mortalities at the Mountaineer Wind Energy Center, Tucker County, West Virginia. Annual Report for 2003, McLean, Virginia, USAGoogle Scholar
  66. Kerns J, Erickson WP, Arnett EB (2005) Bat and bird mortality at wind energy facilities in Pennsylvania and West Virginia. In: Bat Conservation International (ed) Relationships between Bats and Wind Turbines in Pennsylvania and West Virginia. An assessment of fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. A final report submitted to the Bats and Wind Energy Cooperative, Austin, Texas, USA, pp 24–95Google Scholar
  67. Köller J, Köppel J, Peters W (eds) (2006) Offshore Wind Energy. Research on environmental impacts. Springer, BerlinGoogle Scholar
  68. Kriebel D, Tickner J, Epstein P, Lemons J, Levins R, Loechler EL, Quinn M, Rudel R, Schettler T, Stoto M (2001) The precautionary principle in environmental sciences. Environ Health Perspect 109(9):871–876CrossRefGoogle Scholar
  69. Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5(6):315–324CrossRefGoogle Scholar
  70. LAG-VSW, Länderarbeitsgemeinschaft der Vogelschutzwarten (2007) Abstandsregelungen für Windenergieanlagen zu bedeutsamen Vogellebensräumen sowie Brutplätzen ausgewählter Vogelarten. Ber Vogelschutz 44:151–153Google Scholar
  71. Ledec G, Rapp KW, Aiello R (2011) Greening the wind. Environmental and social considerations for wind power development. World Bank, Washington, D.C, USA. Accessed 19 May 2014
  72. Lesinkski G (2007) Bat road casualties and factors determining their number. Mammalia 71:138–142Google Scholar
  73. Long CV, Flint JA, Lepper PA, Dible SA (2009) Wind turbines and bat mortality: interactions of bat echolocation pulses with moving turbine rotor blades. Proc Inst of Acoust 31(1):185–192Google Scholar
  74. Morrison-Saunders A, Marshall R, Arts J (2007) EIA Follow-up. International Best Practice Principles. Special Publication Series 6, International Association for Impact Assessment, Fargo, USAGoogle Scholar
  75. MUGV (2012) Beachtung naturschutzfachlicher Belange bei der Ausweisung von Windeignungsgebieten und bei der Genehmigung von Windenergieanlagen. Erlass des Ministeriums für Umwelt, Gesundheit und Verbraucherschutz vom 01. Januar 2011. Anlage 1. Tierökologische Abstandskriterien für die Errichtung von Windenergieanlagen in Brandenburg (TAK). Stand 15. 10. 2012Google Scholar
  76. Nadaï A, Labussière O (2010) Birds, wind and the making of wind power landscapes in Aude Southern France. Landsc Res 35(2):209–233CrossRefGoogle Scholar
  77. Nie M (2011) NEPA, Interest Groups and Federal Lands Management. UVP-Report 25(4):198–201Google Scholar
  78. Nilsson M, Persson A (2012) Can Earth system be governed? Governance functions for linking climate change mitigation with land use, freshwater and biodiversity protection. Ecol Econ 75:61–71CrossRefGoogle Scholar
  79. Nilsson M, Zamparutti T, Petersen JE, Nykvist B, Rudberg P, McGuinn J (2012) Understanding policy coherence: analytical framework and examples of sector-environment policy interactions in the EU. Environ Policy Gov 22:394–423CrossRefGoogle Scholar
  80. Nunez C (2013) Wind farm faces fine over golden eagle’s death. National Geographic. Accessed 3 Feb 2013
  81. O´Riordan T, Cameron J (1994) The history and contemporary significance of the precautionary principle. In: O´Riordan T, Cameron J (eds) Interpreting the precautionary principle. Earthscan, London, pp 12–30Google Scholar
  82. Piela A (2010) Tierökologische Abstandskriterien bei der Errichtung von Windenergieanlagen in Brandenburg (TAK). Ein Beitrag zur Konfliktbewältigung im Spannungsfeld Vogel-und Fledermausschutz—Windenergie. Nat Landschaft 85 (2): 51–60Google Scholar
  83. Piorkowski MD, O’Connell TJ (2010) Spatial pattern of summer bat mortality from collisions with wind turbines in mixed-grass prairie. Am Midl Nat 164(2):260–269CrossRefGoogle Scholar
  84. Portman ME, Fishhendler I (2011) Towards integrated coastal zone management: a toolkit for practitioners. Hebrew University: Jerusalem. pp 35. Accessed May 15, 2013
  85. Redell D, Arnett EB, Hayes JP, Huso MMP (2006) Patterns of pre-construction bat activity determined using acoustic monitoring at a proposed wind facility in south-central Wisconsin. A final report submitted to the Bats and Wind Energy Cooperative. Accessed 16 Sept 2013
  86. Rhein-Hunsrück-Kreis Kreisverwaltung (2012) Genehmigungsbescheid für den Betrieb von 8 Windkraftanlagen in den Gemarkungen Ellern und Rheinböllern. Simmern, GermanyGoogle Scholar
  87. NABU Rheinland-Pfalz (2013) juwi macht Zugeständnisse beim Fledermausschutz—Naturschutzverbände ziehen Klage gegen acht Windräder im Soonwald zurück. Press release March 18th 2013. Accessed 22 May 2014
  88. Rollins KE, Meyerholz DK, Johnson GD, Capparella AP, Loew SS (2012) A forensic investigation into the etiology of bat mortality at a wind farm: barotrauma or traumatic injury? Vet Pathol 49(2):362–371CrossRefGoogle Scholar
  89. Rydell J, Bach L, Dubourg-Savage MJ, Green M, Rodrigues L, Hedenström A (2010a) Mortality of bats at wind turbines links to nocturnal insect migration? Eur J Wildl Res 56:823–827CrossRefGoogle Scholar
  90. Rydell J, Bach L, Dubourg-Savage M, Green M, Rodrigues L, Hedenström A (2010b) Bat mortality at wind turbines in Northwestern Europe. Acta Chiropterologica 12(2):261–274CrossRefGoogle Scholar
  91. Rydell J, Engström H, Hedenström A, Larsen JK, Pettersson J, Green M (2012) The effect of wind power on birds and bats. A synthesis. Swedish Environmental Protection Agency, StockholmGoogle Scholar
  92. Siwy B (2012) Gamesa halts Shaffer Mountain wind plans. Daily American Staff Writer June 12, 2012. Accessed 13 Sept 2013
  93. Smallwood KS, Neher L, Bell DA (2013) Predicting Collision Hazard Zones to guide Repowering of the Altamont Pass Wind Resource Area. In: Naturvårdsverket (ed) Book of abstracts. Conference on Wind power and environmental impacts Stockholm 5–7 February, Stockholm, Sweden, p 98Google Scholar
  94. Söfker W (2012) Der Teilflächennutzungsplan—ein Instrument zur Steuerung der Windenergie im Außenbereich. Hintergrundpapier Repowering InfoBörse. Accessed 05 Aug 2013
  95. Sovacool BK (2013) The avian benefits of wind energy. A 2009 update. Renew Energy 49:19–24CrossRefGoogle Scholar
  96. Strickland MD, Arnett EB, Erickson WP, Johnson DH, Johnson GD, Morrison ML, Shaffer JA, Warren-Hicks W (2011) Comprehensive guide to studying wind energy/wildlife interactions. Prepared for the National Wind Coordinating Collaborative, Washington, D.C, USA. Accessed 05 Aug 2013
  97. UASWT (University of Applied Sciences Weihenstephan-Triesdorf) (2012) Modellprojekt “Standortfindung für Windkraftanlagen im Naturpark Altmühltal—Zonierungskonzept”. Accessed 05 Aug 2013
  98. UM (2012) Windenergieerlass Baden-Württemberg. Gemeinsame Verwaltungsvorschrift des Ministeriums für Umwelt, Klima und Energiewirtschaft, des Ministeriums für Ländlichen Raum und Verbraucherschutz, des Ministeriums für Verkehr und Infrastruktur und des Ministeriums für Finanzen und Wirtschaft. v. 09. Mai 2012—Az.: 64–4583/404Google Scholar
  99. U.S. Fish and Wildlife Service (2012) Land-based wind energy guidelines. Accessed 15 Sept 2013
  100. Voigt CC, Popa-Lisseanu AG, Niermann I, Kramer-Schadt S (2012) The catchment area of wind farms for European bats: a plea for international regulations. Biol Conserv 153:80–86CrossRefGoogle Scholar
  101. Washington Department of fish and wildlife (2009) Wind Power Guidelines, Olympia, Washington, USA. Accessed 15 Sept 2013
  102. Williams BK (2011) Adaptive management of natural resources—framework and issues. J Environ Manag 92:1346–1353CrossRefGoogle Scholar
  103. Williams BK, Szaro RC, Shapiro CP (2009) Adaptive management. The U.S. Department of the Interior Technical Guidance. Adaptive Management Working Group, U.S., Department of the Interior, Washington D.C. Accessed 05 Aug 2013
  104. Willis CKR, Barclay RMR, Boyles JG, Brigham RM, Brack V Jr, Waldien DL, Reichard J (2009) Bats are not birds and other problems with Sovacool`s (2009) analysis of animal fatalities due to electricity generation. Energy Policy. doi: 10.1016/j.enpol.2009.08.034 Google Scholar
  105. Woody T (2010) It’s green against green in Mojave Desert solar battle. Yale Environment 360, Yale School of Forestry & Environmental Studies. Accessed 02 July 2012
  106. Yonk EM, Simmons RT, Steed BC (2013) Green vs. Green: the political, legal, and administrative pitfalls facing green energy production. Routledge, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Environmental Assessment and Planning Research GroupTechnische Universität Berlin (Berlin Institute of Technology)BerlinGermany

Personalised recommendations