Environmental Management

, Volume 53, Issue 6, pp 1132–1145 | Cite as

Mapping Ecological Processes and Ecosystem Services for Prioritizing Restoration Efforts in a Semi-arid Mediterranean River Basin

  • Mattia Trabucchi
  • Patrick J. O’Farrell
  • Eduardo Notivol
  • Francisco A. Comín


Semi-arid Mediterranean regions are highly susceptible to desertification processes which can reduce the benefits that people obtain from healthy ecosystems and thus threaten human wellbeing. The European Union Biodiversity Strategy to 2020 recognizes the need to incorporate ecosystem services into land-use management, conservation, and restoration actions. The inclusion of ecosystem services into restoration actions and plans is an emerging area of research, and there are few documented approaches and guidelines on how to undertake such an exercise. This paper responds to this need, and we demonstrate an approach for identifying both key ecosystem services provisioning areas and the spatial relationship between ecological processes and services. A degraded semi-arid Mediterranean river basin in north east Spain was used as a case study area. We show that the quantification and mapping of services are the first step required for both optimizing and targeting of specific local areas for restoration. Additionally, we provide guidelines for restoration planning at a watershed scale; establishing priorities for improving the delivery of ecosystem services at this scale; and prioritizing the sub-watersheds for restoration based on their potential for delivering a combination of key ecosystem services for the entire basin.


Erosion Prioritization Spatial congruence Spain Aichi targets Ecosystem function 



The authors want to thank B. Reyers for inspiration and helpfulness and the research group CSIR, Council for Scientific and Industrial Research of Stellenbosch (South Africa), especially D. le Maitre and J. Nel for their advice and patience and P. Ntshotsho for help with revising the manuscript. We thank M.P. Errea, J. Zabalza for the help with GIS analysis and E. Navarro for suggestions on improving the manuscript. This work was funded by Endesa S.A. through the collaborative agreement Endesa-CSIC for scientific research. M. Trabucchi was in receipt of a grant from the Board for Advanced Study, European Social Found, JAE-Doc, Ref. I3P-BPD-2006. This work is a contribution to the Labex OT-Med (no. ANR-11-LABX-0061) funded by the French Government « Investissements d’Avenir » program of the French National Research Agency (ANR) through the A*MIDEX project (no. ANR-11-IDEX-0001-02).

Supplementary material

267_2014_264_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1337 kb)


  1. Albaladejo J, Ortiz R, Guillen F, Alvarez J, Martinez-Mena M, Castillo V (1995) Erodibility of agricultural soils in the semiarid Mediterranean area of Spain. Arid Land Res Manage 9:219–226Google Scholar
  2. Aronson J, Milton SJ, Blignaut JN, Clewell AF (2006) Nature conservation as if people mattered. J Nat Conserv 14:260–263Google Scholar
  3. Barbier EB, Koch EW, Silliman BR et al (2008) Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321–323. doi: 10.1126/science.1150349 CrossRefGoogle Scholar
  4. Bellot J, Bonet A, Sanchez JR, Chirino E (2001) Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landsc Urban Plan 55:41–53CrossRefGoogle Scholar
  5. Benayas JMR, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124. doi: 10.1126/science.1172460 CrossRefGoogle Scholar
  6. Bennett EM, Peterson GD, Gordon LJ (2009) Understanding relationships among multiple ecosystem services. Ecol Lett 12:1394–1404. doi: 10.1111/j.1461-0248.2009.01387.x CrossRefGoogle Scholar
  7. Birch JC, Newton AC, Aquino CA et al (2010) Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services. Proc Natl Acad Sci 107:21925–21930. doi: 10.1073/pnas.1003369107 CrossRefGoogle Scholar
  8. Brabyn L, Mark DM (2011) Using viewsheds, GIS, and a landscape classification to tag landscape photographs. Appl Geogr 31:1115–1122. doi: 10.1016/j.apgeog.2011.03.003 CrossRefGoogle Scholar
  9. Carpenter SR, Mooney HA, Agard J et al (2009) Science for managing ecosystem services: beyond the Millennium Ecosystem Assessment. Proc Natl Acad Sci 106:1305–1312. doi: 10.1073/pnas.0808772106 CrossRefGoogle Scholar
  10. Coen LD, Brumbaugh RD, Bushek D et al (2007) Ecosystem services related to oyster restoration. Mar Ecol Prog Ser 341:303–307. doi: 10.3354/meps341303 CrossRefGoogle Scholar
  11. Comín FA (2010) Ecological restoration: a global challenge. Cambridge Univ Pr, Cambridge, MAGoogle Scholar
  12. Comin FA, Nicolau JM, Trabucchi M et al (2009) Establishing priorities for the management and restoration of river basins with opencast coal mines, vol 124. pp 315–338. http://www.cabdirect.org/abstracts/20103277494.html;jsessionid=ED0849E5548849ACBD2B4BF0006A8709
  13. Durán Zuazo VH, Rodríguez Pleguezuelo CR (2008) Soil-erosion and runoff prevention by plant covers. A review. Agron Sustain Dev 28:65–86. doi: 10.1051/agro:2007062
  14. De Groot RS, Wilson MA, Boumans RM (2002) A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol Econ 41:393–408. doi: 10.1016/S0921-8009(02)00089-7 CrossRefGoogle Scholar
  15. De Groot RS, Alkemade R, Braat L et al (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272CrossRefGoogle Scholar
  16. Delgado I (2000) Base forrajera para el establecimiento de ganaderías de ovino en el secano cerealista. Institución Fernando El Católico, ZaragozaGoogle Scholar
  17. Dotterweich M (2013) The history of human-induced soil erosion: geomorphic legacies, early descriptions and research, and the development of soil conservation—a global synopsis. Geomorphology 201:1–34. doi: 10.1016/j.geomorph.2013.07.021 CrossRefGoogle Scholar
  18. Egoh B, Reyers B, Rouget M et al (2008) Mapping ecosystem services for planning and management. Agric Ecosyst Environ 127:135–140. doi: 10.1016/j.agee.2008.03.013 CrossRefGoogle Scholar
  19. Environmental Systems Research Institute (ESRI) (2008) ArcGIS desktop (ArcInfo) software. ESRI, RedlandsGoogle Scholar
  20. European Commission (2011) Our life insurance, our natural capital: an EU biodiversity strategy to 2020. COM (2011) 244 final. BrusselsGoogle Scholar
  21. Ewing B (2008) The ecological footprint atlas 2008. Global footprint network. http://www.eea.europa.eu/data-and-maps/data/external/IDataSpecRemark1273589791615
  22. Forsyth G, Le Maitre D, O’Farrell P, van Wilgen B (2012) The prioritisation of invasive alien plant control projects using a multi-criteria decision model informed by stakeholder input and spatial data. J Environ Manag 103:51–57CrossRefGoogle Scholar
  23. Fu B, Wang S, Su C, Forsius M (2013) Linking ecosystem processes and ecosystem services. Curr Opin Environ Sustain 5:4–10. doi: 10.1016/j.cosust.2012.12.002 CrossRefGoogle Scholar
  24. García-Ruiz JM (2010) The effects of land uses on soil erosion in Spain: a review. CATENA 81:1–11. doi: 10.1016/j.catena.2010.01.001 CrossRefGoogle Scholar
  25. García-Ruiz JM, Nadal-Romero E, Lana-Renault N, Beguería S (2013) Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198:20–36. doi: 10.1016/j.geomorph.2013.05.023 CrossRefGoogle Scholar
  26. Gobin A, Jones R, Kirkby M et al (2004) Indicators for pan-European assessment and monitoring of soil erosion by water. Environ Sci Policy 7:25–38. doi: 10.1016/j.envsci.2003.09.004 CrossRefGoogle Scholar
  27. Groffman P, Baron J, Blett T et al (2006) Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9:1–13. doi: 10.1007/s10021-003-0142-z CrossRefGoogle Scholar
  28. Guerrero-Campo J, Montserrat-Martí G (2004) Comparison of floristic changes on vegetation affected by different levels of soil erosion in Miocene clays and Eocene marls from Northeast Spain. Plant Ecol Former Veg 173:83–93. doi: 10.1023/B:VEGE.0000026331.85303.c8 CrossRefGoogle Scholar
  29. Hauck J, Görg C, Varjopuro R et al (2013) “Maps have an air of authority”: potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosyst Serv 4:25–32. doi: 10.1016/j.ecoser.2012.11.003 CrossRefGoogle Scholar
  30. Johnson NC (1995) Biodiversity in the balance: approaches to setting geographic conservation priorities. Biodiversity Support Program, Washington , DC, pp 109–115. http://searchworks.stanford.edu/view/4783926
  31. Jones RJA, Hiederer R, Rusco E, Montanarella L (2005) Estimating organic carbon in the soils of Europe for policy support. Eur J Soil Sci 56:655–671. doi: 10.1111/j.1365-2389.2005.00728.x CrossRefGoogle Scholar
  32. Khatami S, Berndtsson R (2013) Watershed restoration of Urmia Lake, Iran. Environmental development.https://lup.lub.lu.se/search/publication/4091537
  33. Kremen C, Ostfeld RS (2005) A call to ecologists: measuring, analyzing, and managing ecosystem services. Front Ecol Environ 3:540–548CrossRefGoogle Scholar
  34. Lal R (1997) Degradation and resilience of soils. Philos Trans R Soc Lond B Biol Sci 352:997–1010. doi: 10.1098/rstb.1997.0078 CrossRefGoogle Scholar
  35. Lal R (2013) Soils and ecosystem services. In: Lal R, Lorenz K, Hüttl RF et al (eds) Ecosyst. Serv. Carbon Sequestration Biosphere. Springer, Netherlands, pp 11–38CrossRefGoogle Scholar
  36. López MV, Gracia R, Arrue JL (1998) Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragon. Eur J Agron 12:191-199.Google Scholar
  37. Lorenz K, Lal R (2010) The Natural Dynamic of Carbon in Forest Ecosystems. Carbon sequestration in forest ecosystems. Springer, Netherlands, pp 23–101Google Scholar
  38. Le Maitre DC, Milton SJ, Jarmain C et al (2007) Linking ecosystem services and water resources: landscape-scale hydrology of the Little Karoo. Front Ecol Environ 5:261–270 10.1890/1540-9295(2007)5[261:LESAWR]2.0.CO;2CrossRefGoogle Scholar
  39. Loomis J, Kent P, Strange L et al (2000) Measuring the total economic value of restoring ecosystem services in an impaired river basin: results from a contingent valuation survey. Ecol Econ 33:103–117CrossRefGoogle Scholar
  40. Maes J, Egoh B, Willemen L et al (2012) Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst Serv 1:31–39. doi: 10.1016/j.ecoser.2012.06.004 CrossRefGoogle Scholar
  41. Martín-López B, Gómez-Baggethun E, Lomas PL, Montes C (2009) Effects of spatial and temporal scales on cultural services valuation. J Environ Manag 90:1050–1059. doi: 10.1016/j.jenvman.2008.03.013 CrossRefGoogle Scholar
  42. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi: 10.1126/science.277.5325.504 CrossRefGoogle Scholar
  43. McMichael A, Scholes R, Hefny M et al (2005) Linking ecosystem services and human well-being. Doris Capistrano Cristan Samper K Ecosyst Eds Ecosyst Hum Well- 4:43–60Google Scholar
  44. Menz MHM, Dixon KW, Hobbs RJ (2013) Hurdles and opportunities for landscape-scale restoration. Science 339:526–527. doi: 10.1126/science.1228334 CrossRefGoogle Scholar
  45. Millennium Ecosystem Assessment (2005). Ecosystems and human well-being: Wetland and water. Synthesis. http://www.millenniumassessment.org/proxy/Document
  46. Mitsch WJ, Day JW, Gilliam JW et al (2001) Reducing nitrogen loading to the Gulf of Mexico from the Mississippi river basin: strategies to counter a persistent ecological problem. Bioscience 51:373–388. doi: 10.1641/0006-3568(2001)051[0373:RNLTTG]2.0.CO;2 Google Scholar
  47. Moberg F, Rönnbäck P (2003) Ecosystem services of the tropical seascape: interactions, substitutions and restoration. Ocean Coast Manag 46:27–46CrossRefGoogle Scholar
  48. Montero M, Montagnini F (2006) Modelos alométricos para la estimación de biomasa de diez especies nativas en plantaciones en la región Atlántica de Costa Rica. Recursos Naturales y Ambiente 45:118–125Google Scholar
  49. Moreno-de las Heras M, Nicolau JM, Espigares T (2008) Vegetation succession in reclaimed coal-mining slopes in a Mediterranean-dry environment. Ecol Eng 34:168–178CrossRefGoogle Scholar
  50. Moreno-de las Heras M, Espigares T, Merino-Martín L, Nicolau JM (2011) Water-related ecological impacts of rill erosion processes in Mediterranean-dry reclaimed slopes. Catena 84:114–124. doi: 10.1016/j.catena.2010.10.010 CrossRefGoogle Scholar
  51. Moreno-Mateos D, Pedrocchi C, Comín FA (2009) Avian communities’ preferences in recently created agricultural wetlands in irrigated landscapes of semi-arid areas. Biodivers Conserv 18:811–828CrossRefGoogle Scholar
  52. Myers N (1996) Environmental services of biodiversity. Proc Natl Acad Sci 93:2764–2769CrossRefGoogle Scholar
  53. Naidoo R, Ricketts TH (2006) Mapping the economic costs and benefits of conservation. PLoS Biol 4:e360. doi: 10.1371/journal.pbio.0040360 CrossRefGoogle Scholar
  54. Nelson E, Mendoza G, Regetz J et al (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7:4–11. doi: 10.1890/080023 CrossRefGoogle Scholar
  55. O’Farrell PJ, Reyers B, Maitre DC et al (2010) Multi-functional landscapes in semi arid environments: implications for biodiversity and ecosystem services. Landsc Ecol 25:1231–1246. doi: 10.1007/s10980-010-9495-9 CrossRefGoogle Scholar
  56. Palmer MA (2009) Reforming watershed restoration: science in need of application and applications in need of science. Estuaries and Coasts, 32(1), 1–17. doi: 10.1016/j.ecoleng.2013.07.059
  57. Palmer MA, Filoso S (2009) Restoration of ecosystem services for environmental markets. Science 325:575. doi: 10.1126/science.1172976 CrossRefGoogle Scholar
  58. Palmer MA, Filoso S, Fanelli RM (2013) From ecosystems to ecosystem services: stream restoration as ecological engineering. Ecol Eng. doi: 10.1016/j.ecoleng.2013.07.059
  59. Parque Cultural del Rio Martin (2014) http://www.parqueriomartin.com/rutas.htm. Accessed 3 Apr 2014
  60. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B Biol Sci 365:2959–2971. doi: 10.1098/rstb.2010.0143 CrossRefGoogle Scholar
  61. Quinton JN, Edwards GM, Morgan RPC (1997) The influence of vegetation species and plant properties on runoff and soil erosion: results from a rainfall simulation study in south east Spain. Soil Use Manag 13:143–148. doi: 10.1111/j.1475-2743.1997.tb00575.x CrossRefGoogle Scholar
  62. Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: revised universal soil loss equation. J Soil Water Conserv 46:30–33Google Scholar
  63. Renard KG, Foster GR, Weesies GA et al (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook, vol 703. WashingtonGoogle Scholar
  64. Reyers B, O’Farrell PJ, Cowling RM et al (2009) Ecosystem services, land-cover change, and stakeholders: finding a sustainable foothold for a semiarid biodiversity hotspot. Ecol Soc 14:38Google Scholar
  65. Rojo L (1990) Plan nacional de restauración hidrológico-forestal y control de la erosión. Tomo I. Memoria; Tomo II. Mapas. ICONA, MadridGoogle Scholar
  66. Roni P, Beechie TJ, Bilby RE et al (2002) A Review of Stream Restoration Techniques and a Hierarchical Strategy for Prioritizing Restoration in Pacific Northwest Watersheds. North Am J Fish Manag 22:1–20. doi: 10.1577/1548-8675(2002)022<0001:AROSRT>2.0.CO;2 CrossRefGoogle Scholar
  67. Salvati L, Bajocco S (2011) Land sensitivity to desertification across Italy: past, present, and future. Appl Geogr 31:223–231. doi: 10.1016/j.apgeog.2010.04.006 CrossRefGoogle Scholar
  68. Samraj P, Sharda VN, Chinnamani S et al (1988) Hydrological behaviour of the Nilgiri sub-watersheds as affected by bluegum plantations, part I. The annual water balance. J Hydrol 103:335–345. doi: 10.1016/0022-1694(88)90142-4 CrossRefGoogle Scholar
  69. Schneiders A, Van Daele T, Van Landuyt W, Van Reeth W (2012) Biodiversity and ecosystem services: complementary approaches for ecosystem management? Ecol Indic 21:123–133. doi: 10.1016/j.ecolind.2011.06.021 CrossRefGoogle Scholar
  70. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi: 10.1007/s10040-001-0170-8 CrossRefGoogle Scholar
  71. Su C, Fu B (2013) Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob Planet Change 101:119–128. doi: 10.1016/j.gloplacha.2012.12.014 CrossRefGoogle Scholar
  72. Su S, Xiao R, Jiang Z, Zhang Y (2012) Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr 34:295–305. doi: 10.1016/j.apgeog.2011.12.001 CrossRefGoogle Scholar
  73. Swift MJ, Izac A-MN, van Noordwijk M (2004) Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric Ecosyst Environ 104:113–134. doi: 10.1016/j.agee.2004.01.013 CrossRefGoogle Scholar
  74. Tallis H, Kareiva P, Marvier M, Chang A (2008) An ecosystem services framework to support both practical conservation and economic development. Proc Natl Acad Sci 105:9457CrossRefGoogle Scholar
  75. Trabucchi M, Ntshotsho P, O’Farrell P, Comín FA (2012a) Ecosystem service trends in basin-scale restoration initiatives: a review. J Environ Manag 111:18–23. doi: 10.1016/j.jenvman.2012.06.040 CrossRefGoogle Scholar
  76. Trabucchi M, Puente C, Comin FA et al (2012b) Mapping erosion risk at the basin scale in a Mediterranean environment with opencast coal mines to target restoration actions. Reg Environ Change. doi: 10.1007/s10113-012-0278-5
  77. Troy A, Wilson MA (2006) Mapping ecosystem services: practical challenges and opportunities in linking GIS and value transfer. Ecol Econ 60:435–449CrossRefGoogle Scholar
  78. Viglizzo EF, Paruelo JM, Laterra P, Jobbágy EG (2012) Ecosystem service evaluation to support land-use policy. Agric Ecosyst Environ 154:78–84. doi: 10.1016/j.agee.2011.07.007 CrossRefGoogle Scholar
  79. Zalewski M, Wagner-Lotkowska I, UNESCO (2004) Integrated watershed mangement: ecohydrology & phytotechnology. Manual. http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base=REPIDISCA&lang=p&nextAction=lnk&exprSearch=30275&indexSearch=ID. Accessed 16 Dec 2013
  80. Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246. doi: 10.1016/j.biocon.2007.07.015 CrossRefGoogle Scholar
  81. West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci Soc Am J 66:1930. doi: 10.2136/sssaj2002.1930 CrossRefGoogle Scholar
  82. Winjum JK, Schroeder PE (1997) Forest plantations of the world: their extent, ecological attributes, and carbon storage. Agric For Meteorol 84:153–167. doi: 10.1016/S0168-1923(96)02383-0 CrossRefGoogle Scholar
  83. Yuan J, Fang W, Fan L et al (2006) Soil formation and vegetation establishment on the cliff face of abandoned quarries in the early stages of natural colonization. Restor Ecol 14:349–356. doi: 10.1111/j.1526-100X.2006.00143.x CrossRefGoogle Scholar
  84. Zhang W, Ricketts TH, Kremen C et al (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260. doi: 10.1016/j.ecolecon.2007.02.024 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mattia Trabucchi
    • 1
    • 2
  • Patrick J. O’Farrell
    • 3
  • Eduardo Notivol
    • 4
  • Francisco A. Comín
    • 1
  1. 1.Instituto Pirenaico Ecología, IPE-CSICSpanish National Research CouncilZaragozaSpain
  2. 2.Institut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), Aix-Marseille Université, CNRS, IRD, Université AvignonAix-en-Provence Cedex 04France
  3. 3.Natural Resources and the EnvironmentCouncil for Scientific and Industrial ResearchStellenboschSouth Africa
  4. 4.Agrifood Research and Technology Centre of AragónCentro de Investigación y Tecnología AgroalimentariaZaragozaSpain

Personalised recommendations