Environmental Management

, Volume 53, Issue 5, pp 1023–1033 | Cite as

A Framework to Predict the Impacts of Shale Gas Infrastructures on the Forest Fragmentation of an Agroforest Region

  • Alexandre Racicot
  • Véronique Babin-Roussel
  • Jean-François Dauphinais
  • Jean-Sébastien Joly
  • Pascal Noël
  • Claude Lavoie
Article

Abstract

We propose a framework to facilitate the evaluation of the impacts of shale gas infrastructures (well pads, roads, and pipelines) on land cover features, especially with regards to forest fragmentation. We used a geographic information system and realistic development scenarios largely inspired by the PA (United States) experience, but adapted to a region of QC (Canada) with an already fragmented forest cover and a high gas potential. The scenario with the greatest impact results from development limited by regulatory constraints only, with no access to private roads for connecting well pads to the public road network. The scenario with the lowest impact additionally integrates ecological constraints (deer yards, maple woodlots, and wetlands). Overall the differences between these two scenarios are relatively minor, with <1 % of the forest cover lost in each case. However, large areas of core forests would be lost in both scenarios and the number of forest patches would increase by 13–21 % due to fragmentation. The pipeline network would have a much greater footprint on the land cover than access roads. Using data acquired since the beginning of the shale gas industry, we show that it is possible, within a reasonable time frame, to produce a robust assessment of the impacts of shale gas extraction. The framework we propose could easily be applied to other contexts or jurisdictions.

Keywords

Core forest Fragmentation Pipeline Road Shale gas Utica shale 

Notes

Acknowledgments

This research was financially supported by the École supérieure d’aménagement du territoire et de développement régional of Université Laval.

References

  1. Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP (2012) Greater focus needed on methane leakage from natural gas infrastructure. Proc Natl Acad Sci USA 109:6435–6440CrossRefGoogle Scholar
  2. Association pétrolière et gazière du Québec (2010) Réponses de l’Association pétrolière et gazière du Québec aux questions de la Commission. Version complète et finale des réponses à la liste de questions DQ4. http://www.bape.gouv.qc.ca/sections/mandats/Gaz_de_schiste/documents/DQ4.2.pdf. Accessed 24 July 2013
  3. Bi X, Wang B, Lu Q (2011) Fragmentation effects of oil wells and roads on the Yellow River Delta, North China. Ocean Coast Manag 54:256–264CrossRefGoogle Scholar
  4. Canards Illimités Canada (2009a) Milieux humides boisés (éléments surfaciques). Classification des milieux humides et modélisation de la sauvagine dans le Québec forestier. Bureau du Québec, Quebec CityGoogle Scholar
  5. Canards Illimités Canada (2009b) Milieux humides non boisés (éléments surfaciques). Classification des milieux humides et modélisation de la sauvagine dans le Québec forestier. Bureau du Québec, Quebec CityGoogle Scholar
  6. Centre de données sur le patrimoine naturel du Québec (2013) Centre de données sur le patrimoine naturel du Québec. http://www.cdpnq.gouv.qc.ca/. Accessed 25 July 2013
  7. Comité de l’évaluation environnementale stratégique sur le gaz de schiste (2012a) Plan de réalisation de l’évaluation environnementale stratégique sur le gaz de schiste. Gouvernement du Québec, Quebec CityGoogle Scholar
  8. Comité de l’évaluation environnementale stratégique sur le gaz de schiste (2012b) L’industrie du gaz de schiste dans les Basses-Terres du Saint-Laurent: scénarios de développement. Gouvernement du Québec, Quebec CityGoogle Scholar
  9. Davis JB, Robinson GR (2012) A geographic model to assess and limit cumulative ecological degradation from Marcellus Shale exploitation in New York, USA. Ecol Soc 17:25Google Scholar
  10. Department of Environmental Protection (2013) Statewide well production and waste data. https://www.paoilandgasreporting.state.pa.us/publicreports/Modules/DataExports/ExportProductionData.aspx?PERIOD_ID=2012-1. Accessed 23 July 2013
  11. Didham RK, Ewers RM (2012) Predicting the impacts of edge effects in fragmented habitats: Laurance and Yensen’s core area model revisited. Biol Conserv 155:104–110CrossRefGoogle Scholar
  12. DMTI Spatial Inc (2012a) Pipelines and transmission. CanMap RouteLogistics, MarkhamGoogle Scholar
  13. DMTI Spatial Inc (2012b) Rail and transit lines. CanMap RouteLogistics, MarkhamGoogle Scholar
  14. Drohan PJ, Brittingham M, Bishop J, Yoder K (2012) Early trends in landcover change and forest fragmentation due to shale-gas development in PA: a potential outcome for the northcentral Appalachians. Environ Manag 49:1061–1075CrossRefGoogle Scholar
  15. Duchaine Y, Tourigny Y, Beaudoin G, Dupuis C (2012) Potentiel en gaz naturel dans le Groupe d’Utica. Université Laval, Quebec CityGoogle Scholar
  16. Economist Intelligence Unit (2011) Breaking new ground. A special report on global shale gas developments. The Economist, LondonGoogle Scholar
  17. Entrekin S, Evans-White M, Johnson B, Hagenbuch E (2011) Rapid expansion of natural gas development poses a threat to surface waters. Front Ecol Environ 9:503–511CrossRefGoogle Scholar
  18. Environmental Systems Research Institute (2011) ArcGIS 10.1. Environmental Systems Research Institute, Redlands, California Google Scholar
  19. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280CrossRefGoogle Scholar
  20. Fletcher RJ Jr, Ries L, Battin J, Chalfoun AD (2007) The role of habitat area and edge in fragmented landscapes: definitively distinct or inevitably intertwined? Can J Zool 85:1017–1030CrossRefGoogle Scholar
  21. Garti AM (2012) The illusion of the blue flame: water law and unconventional gas drilling in New York State. Environ Law New York 23:159–165Google Scholar
  22. Gaz Métro (2010) Développement durable de l’industrie des gaz de shale au Québec. Bureau d’audiences publiques sur l’environnement dans le cadre des audiences sur le Développement durable de l’industrie des gaz de shale au Québec. http://www.bape.gouv.qc.ca/sections/mandats/Gaz_de_schiste/documents/DM62.pdf. Accessed 24 July 2013
  23. Harper KA, MacDonald SE, Burton PJ, Chen J, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P-A (2005) Edge influence on forest structure and composition in fragmented landscapes. Conserv Biol 19:768–782CrossRefGoogle Scholar
  24. Howarth RW, Santoro R, Ingraffea A (2011) Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Chang 106:679–690CrossRefGoogle Scholar
  25. Information Handling Services Global Insight (2011) The economic and employment contributions of shale gas in the United States. Information Handling Services Global Insight Inc, ColumbiaGoogle Scholar
  26. Initiative du gaz naturel canadien (2012) Gaz naturel canadien. Le gaz naturel et l’utilisation des terres, CalgaryGoogle Scholar
  27. International Energy Agency (2011) Natural gas information 2011. Organisation for Economic Co-operation and Development, ParisGoogle Scholar
  28. Jackson RB, Vengosh A, Darrah TH, Warner NR, Down A, Poreda RJ, Osborn SG, Zhao K, Karr JD (2013) Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction. Proc Natl Acad Sci USA 110:11250–11255CrossRefGoogle Scholar
  29. Jodoin Y, Lavoie C, Villeneuve P, Thériault M, Beaulieu J, Belzile F (2008) Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J Appl Ecol 45:459–466CrossRefGoogle Scholar
  30. Johnson C, Boersma T (2012) Energy (in) security in Poland the case of shale gas. Energy Policy 53:389–399CrossRefGoogle Scholar
  31. Johnson N (2010) Pennsylvania energy impacts assessment. Report 1: Marcellus Shale natural gas and wind. The Nature Conservancy, HarrisburgGoogle Scholar
  32. Joly M, Bertrand P, Gbangou RY, White M-C, Dubé J, Lavoie C (2011) Paving the way for invasive species: road types and the spread of common ragweed (Ambrosia artemisiifolia). Environ Manag 48:514–522CrossRefGoogle Scholar
  33. Kiviat E (2013) Risks to biodiversity from hydraulic fracturing for natural gas in the Marcellus and Utica shales. Ann N Y Acad Sci 1286:1–14CrossRefGoogle Scholar
  34. La Financière agricole (2012) Valeur des terres agricoles dans les régions du Québec. La Financière agricole du Québec, Quebec CityGoogle Scholar
  35. Lajoie PG (1975) Les terres agricoles du Québec méridional: distribution, étendue et qualité. Agriculture Canada, Direction générale de la recherche. Centre de recherches sur les terres, OttawaGoogle Scholar
  36. Laurance WF, Yensen E (1991) Predicting the impacts of edge effects in fragmented habitats. Biol Conserv 55:77–92CrossRefGoogle Scholar
  37. Meunier G, Lavoie C (2012) Roads as corridors for invasive plant species: new evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci Manag 5:92–100CrossRefGoogle Scholar
  38. Ministère des Ressources naturelles et de la Faune du Québec (2000) Base de données topographiques du Québec, 1:20 000, version 1.0. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  39. Ministère des Ressources naturelles et de la Faune du Québec (2008a) Bâtiments. Base de données topographiques du Québec, Quebec CityGoogle Scholar
  40. Ministère des Ressources naturelles et de la Faune du Québec (2008b) Équipements. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  41. Ministère des Ressources naturelles et de la Faune du Québec (2008c) Chemins publics. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  42. Ministère des Ressources naturelles et de la Faune du Québec (2008d) Hydrographie. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  43. Ministère des Ressources naturelles et de la Faune du Québec (2010) Territoires de conservation et la protection. Conservation et protection. Couche des territoires récréatifs et protégés. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  44. Ministère des Ressources naturelles et de la Faune du Québec (2011a) Carte des puits forés et fracturés: shale d’Utica. http://sigpeg.mrnf.gouv.qc.ca/gpg/pdf/puits_shales_gazeiferes.pdf. Accessed 24 July 2013
  45. Ministère des Ressources naturelles et de la Faune du Québec (2011b) Aire de confinement du cerf de Virginie. Base de données des habitats fauniques. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  46. Ministère des Ressources naturelles et de la Faune du Québec (2012a) Liste des permis en vigueur: gaz de schiste. http://sigpeg.mrnf.gouv.qc.ca/gpg/pdf/permis_vigueur_utica.pdf. Accessed 24 July 2013
  47. Ministère des Ressources naturelles et de la Faune du Québec (2012b) Zone avec potentiel de gaz de schiste dans les Basses-Terres du Saint-Laurent. http://sigpeg.mrnf.gouv.qc.ca/gpg/pdf/potentiel_gaz_shale_basses_terres.pdf. Accessed 29 July 2013
  48. Ministère des Ressources naturelles et de la Faune du Québec (2012c) Peuplements écoforestiers à jour. Couche écoforestière à l’échelle de 1:20 000. Ministère des Ressources naturelles et de la Faune du Québec, Quebec CityGoogle Scholar
  49. New York State Department of Environmental Conservation (2011) Revised draft supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program. Well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus Shale and other low-permeability gas reservoirs. New York State Department of Environmental Conservation, Albany, NYGoogle Scholar
  50. Olmstead SM, Muehlenbachs LA, Shih J-S, Chu Z, Krupnick AJ (2013) Shale gas development impacts on surface water quality in Pennsylvania. Proc Natl Acad Sci USA 110:4962–4967CrossRefGoogle Scholar
  51. Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci USA 108:8172–8176CrossRefGoogle Scholar
  52. Porensky LM, Young TP (2013) Edge-effect interactions in fragmented and patchy landscapes. Conserv Biol 27:509–519CrossRefGoogle Scholar
  53. Ressources naturelles Canada (2007) Cimetières. Base nationale de données topographiques. Secteur des sciences de la Terre, Direction de l’information cartographique. Centre d’information topographique, SherbrookeGoogle Scholar
  54. Ries L, Fletcher RJ Jr, Battin J, Sisk TD (2004) Ecological responses to habitat edges: mechanisms, models, and variability explained. Ann Rev Ecol Evolut Sys 35:491–522CrossRefGoogle Scholar
  55. Robitaille A, Saucier JP (1998) Paysages régionaux du Québec méridional. Publications du Québec, Quebec CityGoogle Scholar
  56. Schumann J, Vossoughi S (2012) Unconventional gas resources. Am Inst Phy Conf Proc 1453:301–306Google Scholar
  57. Statistique Canada (2011) Profil du recensement. http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/index.cfm?Lang=F. Accessed 24 July 2013
  58. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD (2013) Impact of shale gas development on regional water quality. Science 340, doi: 10.1126/science.1235009. Accessed 17 May 2013

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Alexandre Racicot
    • 1
  • Véronique Babin-Roussel
    • 1
  • Jean-François Dauphinais
    • 1
  • Jean-Sébastien Joly
    • 1
  • Pascal Noël
    • 1
  • Claude Lavoie
    • 1
  1. 1.École supérieure d’aménagement du territoire et de développement régionalUniversité LavalQuebec CityCanada

Personalised recommendations