Environmental Management

, Volume 53, Issue 1, pp 42–54 | Cite as

Changing Human Landscapes Under a Changing Climate: Considerations for Climate Assessments

  • PerdinanEmail author
  • Julie A. Winkler


Climate change is a fundamental aspect of the Anthropocene. Climate assessments are frequently undertaken to evaluate climate change impacts, vulnerability, and adaptive capacity. Assessments are complex endeavors with numerous challenges. Five aspects of a climate assessment that can be particularly challenging are highlighted: choice of assessment strategy, incorporation of spatial linkages and interactions, the constraints of climate observations, interpretation of a climate projection ensemble, uncertainty associated with weather/climate dependency models, and consideration of landscape–climate influences. In addition, a climate assessment strategy that incorporates both traditional “top-down” and “bottom-up” methods is proposed for assessments of adaptation options at the local/regional scale. Uncertainties associated with climate observations and projections and with weather/climate dependency (i.e., response) models are incorporated into the assessment through the “top-down” component, and stakeholder knowledge and experience are included through the “bottom-up” component. Considerable further research is required to improve assessment strategies and the usefulness and usability of assessment findings. In particular, new methods are needed which better incorporate spatial linkages and interactions, yet maintain the fine grain detail needed for decision making at the local and regional scales. Also, new methods are needed which go beyond sensitivity analyses of the relative contribution of land use and land cover changes on local/regional climate to more explicitly consider landscape–climate interactions in the context of uncertain future climates. Assessment teams must clearly communicate the choices made when designing an assessment and recognize the implications of these choices on the interpretation and application of the assessment findings.


Climate assessments Uncertainties Land use land cover change Climate change adaptation 



This review was informed by research funded by NSF Award CNH 0909378, NSF Award SES 0622954, U.S. Environmental Protection Agency Project Number R83081401-0, NOAA Climate Program Office Grant NA10OAR4310213 and a Fulbright Presidential Fellowship. The authors particularly express their thanks to their colleagues from the Pileus and CLIMARK projects for the insights that were provided on climate assessments, and to the stakeholders of the sour cherry industry for their invaluable assistance and insights.


  1. Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11(1):19–30CrossRefGoogle Scholar
  2. Aguilar CA (2006) Trade analysis of specific agri-food commodities using a gravity model. MA Thesis, Department of Agricultural Economics, Michigan State University, East LansingGoogle Scholar
  3. Asseng S, Ewer F, Rosenzweig C, Jones JW, Hatfield JL, Ruane A, Boote KJ, Thorburn P, Rötter RP, Cammarano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulating wheat yields under climate change. Nat Clim Change. doi: 10.1038/nclimate1916
  4. Auffhammer M, Hsiang SM, Schlenker W, Sobel A (2013) Using weather data and climate model output in economic analyses of climate change. NBER Working Paper No. w19087. Available at SSRN Accessed 6 Oct 2012
  5. Balling RC Jr, Idso CD (2002) Analysis of adjustments to the United States Historical Climatology Network (USHCN) temperature database. Geophys Res Lett 29(10):1387CrossRefGoogle Scholar
  6. Brown C, Wilby RL (2012) An alternate approach to assessing climate risks. EOS Trans Am Geophys Union 93(41):401–402CrossRefGoogle Scholar
  7. Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Glob Change Biol 16(4):1145–1157CrossRefGoogle Scholar
  8. Cai XM, Wang DB, Laurent R (2009) Impact of climate change on crop yield: a case study of rainfed corn in central Illinois. J Appl Meteorol Climatol 48(9):1868–1881. doi: 10.1175/2009jamc1880.1 CrossRefGoogle Scholar
  9. Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MDA, Zurek MB (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 133–171Google Scholar
  10. CCSP (2009) Best practice approaches for characterizing, communicating, and incorporating scientific uncertainty in decisionmaking. In: Granger Morgan M, Dowlatabadi H, Henrion M, Keith D, Lempert R, McBride S, Small M, Wilbanks T (eds) A Report by the Climate Change Science Program and the Subcommittee on Global Change Research. National Oceanic and Atmospheric Administration, Washington, DC, 96 ppGoogle Scholar
  11. Challinor AJ, Wheeler TR (2008) Crop yield reduction in the tropics under climate change: processes and uncertainties. Agric For Meteorol 148(3):343–356. doi: 10.1016/j.agrformet.2007.09.015 CrossRefGoogle Scholar
  12. Challinor AJ, Ewert F, Arnold S, Simelton E, Fraser E (2009a) Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. J Exp Bot 60(10):2775–2789. doi: 10.1093/jxb/erp062 CrossRefGoogle Scholar
  13. Challinor AJ, Osborne T, Morse A, Shaffrey L, Wheeler T, Weller H, Vidale PL (2009b) Methods and resources for climate impact research achieving synergy. Bull Am Meteorol Soc 90(6):836–848. doi: 10.1175/2008bams2403.1 CrossRefGoogle Scholar
  14. Chen CC, McCarl BA, Schimmelpfennig DE (2004) Yield variability as influenced by climate: a statistical investigation. Clim Change 66(1–2):239–261CrossRefGoogle Scholar
  15. Chin A, English M, Fu R, Galvin K, Gerlak A, Harden C, McDowell P, McNamara D, Peterson J, Poff L, Roa E, Solecki W, Wohl E (2010) Landscapes in the “Anthropocene”: exploring the human connections. Summary report of NSF workshop. Accessed June 2013
  16. Croley TE (2003) Great Lakes climate change hydrologic impact assessment I.J.C. Lake Ontario-St. Lawrence River regulation study. NOAA Technical Memorandum GLERL-126Google Scholar
  17. Daly C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol 26(6):707–721. doi: 10.1002/joc.1322 CrossRefGoogle Scholar
  18. Daly C, Gibson WP, Taylor GH, Johnson GL, Pasteris P (2002) A knowledge-based approach to the statistical mapping of climate. Clim Res 22(2):99–113. doi: 10.3354/cr022099 CrossRefGoogle Scholar
  19. DaMatta FM, Grandis A, Arenque BC, Buckeridge MS (2010) Impacts of climate changes on crop physiology and food quality. Food Res Int 43(7):1814–1823CrossRefGoogle Scholar
  20. Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3(4):44007CrossRefGoogle Scholar
  21. Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J-F, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 273–313Google Scholar
  22. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 129–234Google Scholar
  23. Guentchev G, Barsugli JJ, Eischeid J (2010) Homogeneity of gridded precipitation datasets for the Colorado River Basin. J Appl Meteorol Climatol 49(12):2404–2415CrossRefGoogle Scholar
  24. Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19(2):240–247CrossRefGoogle Scholar
  25. Harding BL, Wood AW, Prairie JR (2012) The implications of climate change scenario selection for future streamflow projection in the Upper Colorado River Basin. Hydrol Earth Syst Sci 9(1):847–894CrossRefGoogle Scholar
  26. Hatfield J, Takle G, Grotjahn R, Holden P, Izaurralde RC, Mader T, Marshall E (2013) Agriculture. In: U.S. Global Research Program, National Climate Assessment. Accessed 6 Oct 2013
  27. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978. doi: 10.1002/joc.1276 CrossRefGoogle Scholar
  28. Hoogenboom G, White JW, Messina CD (2004) From genome to crop: integration through simulation modeling. Field Crops Res 90(1):145–163. doi: 10.1016/j.fcr.2004.07.014 CrossRefGoogle Scholar
  29. Isik M, Devadoss S (2006) An analysis of the impact of climate change on crop yields and yield variability. Appl Econ 38(7):835–844. doi: 10.1080/00365840193682 CrossRefGoogle Scholar
  30. Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. Eur J Agron 18(3–4):235–265CrossRefGoogle Scholar
  31. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3–4):267–288CrossRefGoogle Scholar
  32. Knutti R (2010) The end of model democracy? Clim Change 102(3):395–404CrossRefGoogle Scholar
  33. Leduc S, Diamond HJ, Palecki MA (2009) The United States Climate Reference Network (USCRN) annual report for fiscal year 2009: US Climate Reference Network. NOAA/NESDIS National Climatic Data Center, AshevilleGoogle Scholar
  34. Lemos MC, Kirchhoff CJ, Ramprasad V (2012) Narrowing the climate information usability gap. Nat Clim Change 2:789–794CrossRefGoogle Scholar
  35. Lofgren BM, Hunter TS, Wilbarger J (2011) Effects of using air temperature as a proxy for potential evapotranspiration in climate change scenarios of Great Lakes basin hydrology. J Gt Lakes Res 37(4):744–752CrossRefGoogle Scholar
  36. Luck J, Spackman M, Freeman A, Trebicki P, Griffiths W, Finlay K, Chakraborty S (2011) Climate change and diseases of food crops. Plant Pathol 60(1):113–121. doi: 10.1111/j.1365-3059.2010.02414.x CrossRefGoogle Scholar
  37. Luo Q, Bellotti W, Williams M, Wang E (2009) Adaptation to climate change of wheat growing in South Australia: analysis of management and breeding strategies. Agric Ecosyst Environ 129(1–3):261–267. doi: 10.1016/j.agee.2008.09.010 CrossRefGoogle Scholar
  38. Maurer EP, Brekke L, Pruitt T, Duffy PB (2007) Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans Am Geophys Union 88(47):504CrossRefGoogle Scholar
  39. Mearns LO, Mavromatis T, Tsvetsinskaya E, Hays C, Easterling W (1999) Comparative responses of EPIC and CERES crop models to high and low spatial resolution climate change scenarios. J Geophys Res Atmos 104(D6):6623–6646CrossRefGoogle Scholar
  40. Meinke H, Baethgen WE, Carberry PS, Donatelli M, Hammer GL, Selvaraju R, Stockle CO (2001) Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agric Syst 70(2–3):493–513CrossRefGoogle Scholar
  41. Menne MJ, Williams CN, Vose RS (2009) The US historical climatology network monthly temperature data, version 2. Bull Am Meteorol Soc 90(7):993–1007. doi: 10.1175/2008bams2613.1 CrossRefGoogle Scholar
  42. Meza FJ, Silva D (2009) Dynamic adaptation of maize and wheat production to climate change. Clim Change 94(1–2):143–156. doi: 10.1007/s10584-009-9544-z CrossRefGoogle Scholar
  43. Moore N, Alagarswamy G, Pijanowski B, Thornton P, Lofgren B, Olson J, Andresen J, Yanda P, Qi JG (2012) East African food security as influenced by future climate change and land use change at local to regional scales. Clim Change 110(3–4):823–844. doi: 10.1007/s10584-011-0116-7 CrossRefGoogle Scholar
  44. NASS (2010) Cherry production. National Agricultural Statistics Service, Agricultural Statistics Board, U.S. Department of Commerce, released 17 June 2010. Accessed 25 April 2011
  45. NOAA-NCDC (2012) Summary Information March 2012: U.S. records warmest March; more than 15,000 warm temperature records broken. National Oceanic and Atmospheric Administration, National Climatic Data Center. Accessed 5 Dec 2012
  46. Nonhebel S (1994) Inaccuracies in weather data and their effects on crop growth simulation results. I. Potential production. Clim Res 4:47–60CrossRefGoogle Scholar
  47. Panel on Adapting to the Impacts of Climate Change National Research Council (2010) Adapting to the impacts of climate change. America’s climate choices: Panel on Adapting to the Impacts of Climate Change Board on Atmospheric Sciences and Climate Division on Earth and Life Studies. National Research Council, National Academy of Sciences, Washington, DCGoogle Scholar
  48. Parker WS (2013) Ensemble modeling, uncertainty and robust predictions. WIREs Clim Change 4:213–223CrossRefGoogle Scholar
  49. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78(12):2837–2849. doi: 10.1175/1520-0477(1997)078<2837:aootgh>;2 CrossRefGoogle Scholar
  50. Peterson TC, Easterling DR, Karl TR, Groisman P, Nicholls N, Plummer N, Torok S, Auer I, Boehm R, Gullett D, Vincent L, Heino R, Tuomenvirta H, Mestre O, Szentimrey T, Salinger J, Forland EJ, Hanssen-Bauer I, Alexandersson H, Jones P, Parker D (1998) Homogeneity adjustments of in situ atmospheric climate data: a review. Int J Climatol 18(13):1493–1517. doi: 10.1002/(sici)1097-0088(19981115)18:13<1493:aid-joc329>;2-t CrossRefGoogle Scholar
  51. Pielke RA Sr, Wilby RL (2012) Regional climate downscaling: what’s the point? EOS Trans Am Geophys Union 93(5):52–53CrossRefGoogle Scholar
  52. Pielke RA Sr, Stohlgren T, Schell L, Parton W, Doesken N, Redmond K, Moeny J, McKee T, Kittel TGF (2002) Problems in evaluating regional and local trends in temperature: an example from eastern Colorado, USA. Int J Climatol 22(4):421–434. doi: 10.1002/joc.706 CrossRefGoogle Scholar
  53. Pielke RA Sr, Adegoke J, Beltran-Przekurat A, Hiemstra CA, Lin J, Nair US, Niyogi D, Nobis TE (2007a) An overview of regional land-use and land-cover impacts on rainfall. Tellus B 59(3):587–601. doi: 10.1111/j.1600-0889.2007.00251.x CrossRefGoogle Scholar
  54. Pielke RA Sr, Adegoke JO, Chase TN, Marshall CH, Matsui T, Niyogi D (2007b) A new paradigm for assessing the role of agriculture in the climate system and in climate change. Agric For Meteorol 142(2–4):234–254CrossRefGoogle Scholar
  55. Pielke RA Sr, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdiscip Rev Clim Change 2(6):828–850CrossRefGoogle Scholar
  56. Pitman AJ, Avila FB, Abramowitz G, Wang YP, Phipps SJ, de Noblet-Ducoudre N (2011) Importance of background climate in determining impact of land-cover change on regional climate. Nat Clim Change 1(9):472–475. doi: 10.1038/nclimate1294 CrossRefGoogle Scholar
  57. Prudhomme C, Wilby RL, Crooks S, Kay AL, Reynard NS (2010) Scenario-neutral approach to climate change impact studies: application to flood risk. J Hydrol 390:198–209CrossRefGoogle Scholar
  58. Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32(1):91–102. doi: 10.1016/j.eja.2009.06.003 CrossRefGoogle Scholar
  59. Salter J, Robinson J, Wiek A (2010) Participatory methods of integrated assessment—a review. Wiley Interdiscip Rev Clim Change 1(5):697–717CrossRefGoogle Scholar
  60. Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci USA 106(37):15594–15598. doi: 10.1073/pnas.0906865106 CrossRefGoogle Scholar
  61. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci USA 104(50):19703–19708. doi: 10.1073/pnas.0701976104 CrossRefGoogle Scholar
  62. Skinner WR, Majorowicz JA (1999) Regional climatic warming and associated twentieth century land-cover changes in north-western North America. Clim Res 12:39–52CrossRefGoogle Scholar
  63. Smit B, Skinner MW (2002) Adaptation options in agriculture to climate change: a typology. Mitig Adapt Strateg Glob Change 7(1):85–114CrossRefGoogle Scholar
  64. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 497–540Google Scholar
  65. Soussana JF, Graux AI, Tubiello FN (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61(8):2217–2228. doi: 10.1093/jxb/erq100 CrossRefGoogle Scholar
  66. Stainforth DA, Downing TE, Washington R, Lopez A, New M (2007) Issues in the interpretation of climate model ensembles to inform decisions. Philos Trans R Soc A 365(1857):2163–2177. doi: 10.1098/rsta.2007.2073 CrossRefGoogle Scholar
  67. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2053–2075CrossRefGoogle Scholar
  68. Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical–statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31(10):1530–1544. doi: 10.1002/joc.2168 CrossRefGoogle Scholar
  69. Thornsbury S, Woods M (2005) Market study of the Polish tart cherry industry: final report. Department of Agricultural Economics, Michigan State University, East Lansing. Accessed 28 April 2011
  70. Toure A, Major DJ, Lindwall CW (1995) Comparison of five wheat simulation models in southern Alberta. Can J Plant Sci 75(1):61–68CrossRefGoogle Scholar
  71. Tribbia J, Moser SC (2008) More than information: @hat coastal managers need to plan for climate change. Environ Sci Policy 11:315–328CrossRefGoogle Scholar
  72. Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104(52):20666–20671CrossRefGoogle Scholar
  73. USDA Economic Research Service (2012) Major uses of land in the United States, 2007. Accessed 6 Oct 2013
  74. USGCRP (2013) Assess the U.S. climate. Accessed 6 Oct 2013
  75. van Asselt MBA, Rotmans J (2002) Uncertainty in integrated assessment modelling. Clim Change 54(1):75–105CrossRefGoogle Scholar
  76. Vera-Diaz MDC, Kaufmann RK, Nepstad DC, Schlesinger P (2008) An interdisciplinary model of soybean yield in the Amazon Basin: the climatic, edaphic, and economic determinants. Ecol Econ 65(2):420–431CrossRefGoogle Scholar
  77. Winkler JA (2004) The impact of technology on in situ atmospheric observations and climate science. In: Brunn S, Cutter S, Harrington JW (eds) Geography and technology (an AAG Centennial publication). Kluwer Academic Publishers, Dordrecht, pp 461–490Google Scholar
  78. Winkler JA, Thornsbury S, Artavia M, Chmielewski F-M, Kirschke D, Lee S, Liszewska M, Loveridge S, Tan P-N, Zhong S, Andresen J, Black J, Kurlus R, Nizalov D, Olynk N, Ustrnul Z, Zavalloni C, Bisanz J, Bujdosó G, Fusina L, Henniges Y, Hilsendegen P, Lar K, Malarzewski L, Moeller T, Murmylo R, Niedzwiedz T, Nizalova O, Prawiranata H, Rothwell N, van Ravensway J, von Witzke H, Woods M (2010) A conceptual framework for multi-regional climate change assessments for international market systems with long-term investments. Clim Change 103(3):445–470. doi: 10.1007/s10584-009-9781-1 CrossRefGoogle Scholar
  79. Winkler JA, Guentchev GS, Liszewska M, Perdinan, Tan P-N (2011a) Climate scenario development and applications for local/regional climate change impact assessments: an overview for the non-climate scientist. Part II: considerations when using climate change scenarios. Geogr Compass 5(6):301–328. doi: 10.1111/j.1749-8198.2011.00426.x CrossRefGoogle Scholar
  80. Winkler JA, Guentchev GS, Perdinan, Tan P-N, Zhong S, Liszewska M, Abraham Z, Niedźwiedź T, Ustrnul Z (2011b) Climate scenario development and applications for local/regional climate change impact assessments: an overview for the non-climate scientist. Part I: scenario development using downscaling methods. Geogr Compass 5(6):275–300CrossRefGoogle Scholar
  81. Winkler JA, Andresen J, Bisanz J, Guentchev G, Nugent J, Piromsopa K, Rothwell N, Zavalloni C, Clark J, Min HK, Pollyea A, Prawiranata H (2012a) Michigan’s tart cherry industry: vulnerability to climate variability and change. In: Pryor SC (ed) Climate change in the midwest: impacts, risks, vulnerability and adaptation. Indiana University Press, Bloomington, pp 104–116. ISBN 978-0-253-00682-0Google Scholar
  82. Winkler JA, Bisanz JM, Guentchev GS, Piromsopa K, van Ravensway J, Prawiranata H, Torre RS, Min HK, Clark J (2012b) The development and communication of an ensemble of local-scale climate scenarios: an example from the Pileus Project. In: Dietz T, Bidwell D (eds) Climate change in the Great Lakes Region: navigating an uncertain future. Michigan State University Press, East Lansing, pp 231–248Google Scholar
  83. Yin XY, Struik PC (2010) Modelling the crop: from system dynamics to systems biology. J Exp Bot 61(8):2171–2183. doi: 10.1093/jxb/erp375 CrossRefGoogle Scholar
  84. Zavalloni C, Andresen JA, Winkler JA, Flore JA, Black JR, Beedy TL (2006) The Pileus Project: climatic impacts on sour cherry production in the Great Lakes Region in past and projected future time frames. Acta Hortic (ISHS) 707:101–108CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GeographyMichigan State UniversityEast LansingUSA
  2. 2.Department of Geophysics and MeteorologyBogor Agricultural UniversityBogorIndonesia

Personalised recommendations