Environmental Management

, Volume 51, Issue 6, pp 1194–1209 | Cite as

Ecosystem Service Restoration after 10 Years of Rewetting Peatlands in NE Germany

  • Stefan Zerbe
  • Peggy Steffenhagen
  • Karsten Parakenings
  • Tiemo Timmermann
  • Annett Frick
  • Jörg Gelbrecht
  • Dominik Zak
Article

Abstract

The restoration of ecosystem services, i.e., production, regulation, and information, is a global challenge, which the federal state of Mecklenburg-Vorpommern in NE Germany addressed in 2000 by rewetting over 20,000 ha of degraded peatlands within the Mire Restoration Program. We evaluated ecosystem services in 23 rewetted sites by assessing the following mire parameters within a ten year period: (a) dominant vegetation at the ecosystem level, (b) peat formation potential at the landscape level, and (c) aboveground biomass and nutrient levels. Seven to 10 years after rewetting, the wetlands formed a mosaic of vegetation types with the highest potential for peat formation and several dominant, peat-forming species accumulated high levels of aboveground biomass and nutrients (C, N, P). Common reed (Phragmites australis) accumulated the most biomass (up to 24 t dry matter/ha), and N+P during the growing season. A future management option is to annually harvest aquatic and wetland plants to reduce nutrient levels in restored mire ecosystems.

Keywords

Biomass Carbon standing stock Eutrophication Nutrient standing stock Peat formation Phragmites australis 

Notes

Acknowledgments

This assessment of restoration success was based on single studies kindly supported by the Landesamt für Umwelt, Naturschutz und Geologie in Mecklenburg-Vorpommern (LUNG MV).

References

  1. Álvarez JA, Bécares E (2006) Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland. Ecol Eng 28:99–105CrossRefGoogle Scholar
  2. Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68CrossRefGoogle Scholar
  3. Baratieri M, Patuzzi F, Thevs N, Zerbe S (2011) Assessment of suitable energy conversion scenarios of common reeds, Phragmites australis. In: Proceedings of the 19th European biomass conference and exhibition, Berlin. pp 1501–1514. doi: 10.5071/19thEUBCE2011-VP2.3.38
  4. Berg C, Dengler J, Abdank A, Isermann M (eds) (2004) Die Pflanzengesellschaften Mecklenburg-Vorpommerns und ihre Gefährdung. Weissdorn, JenaGoogle Scholar
  5. Bernard JM, Hankinson G (1979) Seasonal changes in standing crop, primary production and nutrient levels in a Carex rostrata wetland. Oikos 32:328–336CrossRefGoogle Scholar
  6. Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad-Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R, Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O’Donnell TK, Pagano L, Powell B, Sudduth E (2005) Synthesizing U.S. river restoration efforts. Science 308:636–637CrossRefGoogle Scholar
  7. Bonnett SAF, Ross S, Linstead C, Maltby E (2009) A review of techniques for monitoring the success of peatland restoration. University of Liverpool. Natural England Commissioned Reports 86, pp 189Google Scholar
  8. Breiman L (2001) Random forests. Mach Learn 45(1):5–32CrossRefGoogle Scholar
  9. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388CrossRefGoogle Scholar
  10. Coops H, Boeters R, Smit H (2003) Direct and indirect effects of wave attack on helophytes. Aquat Botany 41:333–352CrossRefGoogle Scholar
  11. Dong Z, Chen G, He X, Han Z, Wang X (2004) Controlling blown sand along the highway crossing the Taklimakan desert. J Arid Environ 57:329–344CrossRefGoogle Scholar
  12. Edwards PJ, Abivardi C (1997) Ecological engineering and sustainable development. In: Urbanska KM, Webb NR, Edwards PJ (eds) Restoration ecology and sustainable development. Cambridge University Press, Cambridge, pp 325–352Google Scholar
  13. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Machine learning: proceedings of the thirteenth international conference, 3–6 July 1996, Bari. pp. 148–156Google Scholar
  14. Frick A, Steffenhagen P, Zerbe S, Timmermann T, Schulz K (2011) Monitoring of the vegetation composition in rewetted peatland with iterative decision tree classification of satellite imagery. Photogramm Fernerkund Geoinf 3:109–122CrossRefGoogle Scholar
  15. Granéli W (1984) Reed Phragmites australis (Cav.) Trin. ex Steudel as an energy source in Sweden. Biomass 4:183–208CrossRefGoogle Scholar
  16. Greenway M, Woolley A (2001) Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia. Water Sci Techn 44:303–310Google Scholar
  17. Gumbricht T (1993) Nutrient removal processes in freshwater submersed macrophytes systems. Ecol Eng 2:1–30CrossRefGoogle Scholar
  18. Hahn-Schöfl M, Zak D, Minke M, Gelbrecht J, Augustin J, Freibauer A (2011) Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8:1539–1550CrossRefGoogle Scholar
  19. Hansson P, Fredriksson H (2004) Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agric Ecosyst Environ 102:365–375CrossRefGoogle Scholar
  20. Hartmann M (1999) To the roots of peat formation: production and decomposition processes in a fen. Diss. Univ Greifswald, GreifswaldGoogle Scholar
  21. Hoagland CR, Lowell EG, David MB (2001) Plant nutrient uptake and biomass accumulation in a constructed wetland. J Freshw Ecol 16:527–540CrossRefGoogle Scholar
  22. Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson D, Sanderson EW, Valladares F, Vilá M, Zamora R, Zobel M (2006) Emerging novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  23. Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Prog Phys Geogr 28:95–123CrossRefGoogle Scholar
  24. Hölzel N, with contributions from Rebele F, Rosenthal G, Eichberg C (2009) Ökologische Grundlagen und limitierende Faktoren der Renaturierung. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer, pp 23–53Google Scholar
  25. Jansen F, Zerbe S, Succow M (2009) Changes in landscape naturalness derived from a historical land register: a case study from NE Germany. Landsc Ecol 24:185–198CrossRefGoogle Scholar
  26. Kätterer T, Andrén O (1999) Growth dynamics of reed canary grass (Phalaris arundinacea L.) and its allocation of biomass and nitrogen below ground in a field receiving daily irrigation and fertilisation. Nutr Cycl Agroecosyst 54:21–29CrossRefGoogle Scholar
  27. Ketcheson SJ, Price JS (2011) The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands: doi: 10.1007/s13157-011-0241-0
  28. Koska I (2001) Ökohydrologische Kennzeichnung von Moorstandorten. In: Succow M, Joosten H (eds) Landschaftsökologische Moorkunde. Schweizerbartsche Verlagsbuchhandlung, Stuttgart, pp 92–111Google Scholar
  29. Kvĕt J, Husák Š (1978) Primary data on biomass and production estimates in typical stands of fishpond littoral plant communities. In: Dykyjová D, Kvĕt J (eds) Pond littoral ecosystems: structure and functioning. Springer, New York, pp 211–216Google Scholar
  30. Maltby E (1997) Wetland soils: a perspective on scientific and management challenges. Seesoils J 12:4–12Google Scholar
  31. Mitsch JW, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  32. MUNLV (Ministerium für Umwelt und Naturschutz, Landwirtschaft und VerbraucherschutzdesLandes Nordrhein-Westfalen) (2005) Erfolgskontrolle von Maßnahmen zur Unterhaltung und zum naturnahen Ausbau von Gewässern. DüsseldorfGoogle Scholar
  33. Odonk JP, Kvĕt J (1978) Selection of sampling areas in assessment of production. In: Dykyjová D, Kvĕt J (eds) Pond littoral ecosystems: structure and functioning. Springer, New York, pp 163–174Google Scholar
  34. Oswit J, Pacowski R, Zurek S (1976) Characteristics of more important peat species in Poland. In: Peatlands and their utilization in Poland, V. International Peat Congress Poznan. NOT, Warsaw, pp 51–60Google Scholar
  35. Price JS, Rochefort L, Campeau S (2002) Use of shallow basins to restore cutover peatlands: hydrology. Rest Ecol 10:259–266CrossRefGoogle Scholar
  36. Price JS, Heathwaite AL, Baird AJ (2003) Hydrological processes in abandoned and restored peatlands: an overview of management approaches. Wetlands Ecol Manage 11:65–83CrossRefGoogle Scholar
  37. Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San MateoGoogle Scholar
  38. Rothmaler W, Jäger E, Werner K (eds) (2005) Exkursionsflora von Deutschland, Band 4. Gefäßpflanzen: Kritischer Band, 10th edn. Elsevier, MünchenGoogle Scholar
  39. Schulz K, Timmermann T, Steffenhagen P, Zerbe S, Succow M (2011) The effect of flooding on carbon and nutrient standing stocks of helophyte biomass in rewetted fens. Hydrobiologia. doi: 10.1007/s10750-011-0782-5 Google Scholar
  40. Society for Ecological Restoration International (2004) The SER International Primer on Ecological Restoration. Version 2. http://www.ser.org/content/ecological_restoration_primer.asp
  41. Steffenhagen P, Timmermann T, Schulz K, Zerbe S (2008) Biomasseproduktion sowie Kohlenstoff- und Nährstoffspeicherung durch Sumpfpflanzen (Helophyten) und Wasserpflanzen (Hydrophyten). In: Gelbrecht, Zak D, Augustin J (eds) Phosphor- und Kohlenstoff-Dynamik und Vegetationsentwicklung in wiedervernässten Mooren des Peenetals in Mecklenburg-Vorpommern—Status, Steuergrößen und Handlungsmöglichkeiten. Ber IGB 26:145–150Google Scholar
  42. Steffenhagen P, Zerbe S, Frick A, Schulz K, Timmermann T (2010) Wiederherstellung von Ökosystemleistungen der Flusstalmoore in Mecklenburg-Vorpommern. Natursch Landschaftspl 42:304–311Google Scholar
  43. Steffenhagen P, Zak D, Schulz K, Timmermann T, Zerbe S (2012) Biomass and nutrient stock of submersed and floating macrophytes in shallow lakes formed by rewetting of degraded fens. Hydrobiologia 692:99–109CrossRefGoogle Scholar
  44. Succow M, Joosten H (eds) (2001) Landschaftsökologische Moorkunde, 2nd edn. Schweizerbart, StuttgartGoogle Scholar
  45. Tanneberger F, Tegetmeyer C, Dylawerski M, Flade M, Joosten H (2009) Commercially cut reed as a new and sustainable habitat for the globally threatened Aquatic Warbler. Biodiv Conserv 18:1475–1489CrossRefGoogle Scholar
  46. Timmermann T, Margoczi K, Takács G, Vegelin K (2006) Restoration of peat-forming species-poor fen grasslands. Appl Veg Sci 9:241–250CrossRefGoogle Scholar
  47. Timmermann T, Joosten H, Succow M (2009) Restaurierung von Mooren. In: Zerbe S, Wiegleb G (eds) Renaturierung von Ökosystemen in Mitteleuropa. Springer, Stuttgart, pp 55–93CrossRefGoogle Scholar
  48. Van Andel J, Aronson J (2006) Restoration ecology: the new frontier. Wiely-Blackwell, OxfordGoogle Scholar
  49. Van der Steen P, Brenner A, Oron G (1998) An integrated duckweed and algae pond system for nitrogen removal and renovation. Water Sci Tech 38:335–343CrossRefGoogle Scholar
  50. Verhoeven JTA, Van der Toorn J (1990) Marsh eutrophication and wastewater treatment. In Patten BC (ed) Wetlands and shallow continental water bodies. Case studies, vol. 1, SPB Academic Publishing, The Hague, pp 571–585Google Scholar
  51. Westlake DF (1966) Biomass and productivity of Glyceria maxima—seasonal changes in biomass. J Ecol 54:745CrossRefGoogle Scholar
  52. Zak D, Gelbrecht J, Wagner C, Payer B, Augustin J (2010) Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration. Ecol Appl 20:1336–1349CrossRefGoogle Scholar
  53. Zerbe S, Thevs N (2011) Restoring Central Asian floodplain ecosystems as natural capital and cultural heritage in a continental desert environment. In: Hong S-K, Wu J, Kim J-E, Nakagoshi N (eds) Landscape ecology in Asian cultures., Ecological Research MonographsSpringer, Dordrecht, pp 277–297CrossRefGoogle Scholar
  54. Zerbe S, Wiegleb G (eds) (2009) Renaturierung von Ökosystemen in Mitteleuropa. Springer, StuttgartGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stefan Zerbe
    • 1
  • Peggy Steffenhagen
    • 2
  • Karsten Parakenings
    • 3
  • Tiemo Timmermann
    • 3
  • Annett Frick
    • 2
  • Jörg Gelbrecht
    • 4
  • Dominik Zak
    • 4
  1. 1.Faculty of Science and TechnologyFree University of Bozen-BolzanoBozenItaly
  2. 2.Luftbild Umwelt Planung GmbH (LUP)PotsdamGermany
  3. 3.Institute of Botany and Landscape EcologyUniversity GreifswaldGreifswaldGermany
  4. 4.Leibniz Institute of Freshwater Ecology and Inland Fisheries BerlinBerlinGermany

Personalised recommendations