Environmental Management

, Volume 51, Issue 3, pp 651–662 | Cite as

A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

  • Anne GanteaumeEmail author
  • Andrea Camia
  • Marielle Jappiot
  • Jesus San-Miguel-Ayanz
  • Marlène Long-Fournel
  • Corinne Lampin


Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.


Ignition factors Fire occurrence Mediterranean region 



This study was funded by the Joint Research Centre of the European Commission, Service Contract no 384 340 “Determination of forest fire causes and harmonization of methods for reporting them”.


  1. Achard F, Eva HD, Mollicone D, Beuchle R (2008) The effect of climate anomalies and human ignition factor on wildfires in Russian boreal forests. Philos Trans R Soc B-Biol Sci 363:2331–2339CrossRefGoogle Scholar
  2. Alexandrian D (1995) Livre blanc “Routes et incendies”—Le cas du département des Bouches-du-Rhône, CETE MéditerranéeGoogle Scholar
  3. Alexandrian D, Gouiran M (1990) Les incendies de forêts en France. Revue Forestière Française XLII. No special, pp 34–41Google Scholar
  4. Altobellis AT (1983) A survey of rural population density and forest fire occurrence in the South, 1956–1970: USDA Forest Service, Southern Forest Experiment Station, Research Note SO-294, New OrleansGoogle Scholar
  5. Amatulli G, Perez-Cabello F, de la Riva J (2007) Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol model 20:321–333CrossRefGoogle Scholar
  6. Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in Southern Africa. Global Change Biol 15:613–630CrossRefGoogle Scholar
  7. Badia-Perpinyà A, Pallares-Barbera M (2006) Spatial distribution of ignitions in Mediterranean peri-urban and rural areas: the case of Catalonia. Int J Wildland Fire 15:187–196CrossRefGoogle Scholar
  8. Bar Massada A, Radeloff VC, Stewart SI, Hawbaker TJ (2009) Wildfire risk in the wildland–urban interface: a simulation study in northwestern Wisconsin. Forest Ecol Manag 258:1990–1999CrossRefGoogle Scholar
  9. Bertrand AL, Baird AW (1975) Incendiarims in Southern Forest: a decade of sociological research. In: USDA Forest Service (ed), Southern Forest Experiment Station Bulletin No. 838. Social Science Research Centre at Mississippi UniversityGoogle Scholar
  10. Bonora L, Conese C, Lampin C, Martin P, Martínez J, Molina D, Salas J (2002) Towards methods for investigating on wildland fire causes. Euro-Mediterranean wildland fire laboratory, a “wall-less” laboratory for wildland fire sciences and technologies in the Euro-Mediterranean Region. Deliverable D-05-02Google Scholar
  11. Bossard M, Feranec J, Otahel J (2000) Corine land cover technical guide. Addendum 2000. EEA, CopenhagenGoogle Scholar
  12. Bryant C (2008) Understanding bushfire: trends in deliberate vegetation fires in Australia. Technical and background paper series 27, Australian Institute of Criminology, CanberraGoogle Scholar
  13. Bulgarian State Forestry Agency (2008) Bulgarian fire reportGoogle Scholar
  14. Calef M, McGuire A, Chapin III F (2009) Human influences on wildfire in Alaska from 1988 through 2005: an analysis of the spatial patterns of human impacts. Earth Interactions, 12, Paper 1Google Scholar
  15. Camia A, Durrant Houston T, San-Miguel J (2010) The European fire database: development, structure and implementation In: Viegas DX (ed), Proceedings of the VI international conference on forest fire research, CoimbraGoogle Scholar
  16. Cardille JA, Ventura SJ, Turner MG (2001) Environmental and social factors influencing wildfires in the upper Midwest, United States. Ecol Appl 11:111–127CrossRefGoogle Scholar
  17. Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, García-Alegre M, Antonovskiy M, Buchshtaber V, Pivoravov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Global Change Biol 11:1537–1555CrossRefGoogle Scholar
  18. Catry FX, Damasceno P, Silva JS, Galante M, Moreira F (2007) Spatial distribution patterns of wildfire ignitions in Portugal, Conference wildfire 2007, Seville (Spain)Google Scholar
  19. Chou Y, Minnich R, Chase R (1993) Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ Manag 17:129–140CrossRefGoogle Scholar
  20. Chuvieco E, Congalton RG (1989) Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens Environ 29:147–159CrossRefGoogle Scholar
  21. Chuvieco E, Justice C (2010) Relations between human factors and global fire activity. In: Chuvieco E, Li J, Yang X (eds) Advances in earth observation of global change. Springer, Dordrecht, pp 187–200CrossRefGoogle Scholar
  22. Chuvieco E, Salas FJ, Carvacho L, Rodríguez-Silva F (1999) Integrated fire risk mapping. In: Chuvieco E (ed) Remote sensing of large wildfires in the European Mediterranean basin. Springer-Verlag, Berlin, pp 61–84CrossRefGoogle Scholar
  23. Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martín MP, Vilar L, Martínez J, Martín S, Ibarra P, de la Riva J, Baeza J, Rodríguez F, Molina JR, Herrera MA, Zamora R (2010) Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221:46–58. doi: 10.1016/J.ECOLMODEL.2008.11.017 CrossRefGoogle Scholar
  24. Cochrane MA, Laureance WF (2002) Fire as a large-scale edge effect in Amazonian forests. J Trop Ecol 18:311–325CrossRefGoogle Scholar
  25. Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of eastern Amazon: effects on forest structure, biomass and species composition. Biotropica 31:2–16Google Scholar
  26. Conedera M, Cesti G, Pezzatti GB, Zumbrunnen T, Spinedi F (2006) Lightning-induced fires in the Alpine region: an increasing problem. V International Conference on forest fire research, PortugalGoogle Scholar
  27. Cunningham AA, Martell DL (1976) The use of subjective probability assessments to predict forest fire occurrence. Can J Forest Res 6:348–356CrossRefGoogle Scholar
  28. De la Riva J, Perez-Cabello F (2005) El factor humano en el riesgo de incendios forestales a escala municipal. Aplicación de técnicas SIG para su modelización. In La ciencia forestal: respuestas para la sostenibilidad. 4 Congreso Forestal Español. Sociedad Española de Ciencias Forestales, MadridGoogle Scholar
  29. De la Riva J, Perez-Cabello F, Chuvieco E (2006) Wildland fire ignition danger spatial modelling using GIS and satellite data. In: EGU General Assembly—European Geosciences Union. Geophys Res Abstr 8:10321Google Scholar
  30. de Vasconcelos MJP, Silva S, Tomé M, Alvim M, Pereira JMC (2001) Spatial prediction of fire ignition probabilities: comparing logistic regression and neural networks. Photogramm Eng Remote Sens 67(1):73–83Google Scholar
  31. Decarnin E, 2002. Etude du risque incendie. Mise en place d’une méthodologie pour la création d’un indice de risque anthropique d’éclosion de feux de forêt. Mémoire de DEA. Structures et Dynamiques Spatiales, Université de ProvenceGoogle Scholar
  32. Dickson BG, Prather JW, Xu Y, Hampton HM, Aumack EN, Sisk TD (2006) Mapping the probability of large fire occurrence in northern Arizona. USA Landsc Ecol 2:747–761CrossRefGoogle Scholar
  33. Donoghue LR, Main WA (1985) Some factors influencing wildfire occurrence and measurement of fire prevention effectiveness. J Environ Manag 20(1):87–96Google Scholar
  34. Duguy B (1998) Reconstruccion de los cambios en los usos del suelo y en la estructura del paisaje (1956–1994). Interaccion con los incendios. Caso de una zona piloto en la provincia de Alicante. PhD Thesis. Centro Internacional de Altos Estudios Agronomicos Mediterra′neos, Instituto Agronomico Mediterraneo de Zaragoza, Zaragoza, SpainGoogle Scholar
  35. FAO (1986) Wildland fire management terminology. FAO forestry paper 70, Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  36. FAO (2007) Fire management—global assessment 2006. FAO Forestry Paper 151, Rome, p 156Google Scholar
  37. Farina A (1998) Principles and methods in landscape ecology. Chapman and Hall Ltd, CambridgeGoogle Scholar
  38. Ferreira de Almeida AMS, Vilacae-Moura PVS (1992) The relationship of forest fires to agro-forestry and socio-economic parameters in Portugal. Int J Wildland Fire 2:37–40CrossRefGoogle Scholar
  39. Follin JM (1999) Evaluation des risques naturels anthropiques d’éclosion de feux de forêt à l’Ets des Bouches-du-Rhône. Université de Provence, Mémoire de géographieGoogle Scholar
  40. Franssila M (1959) Kulovaaran ja säätekijöiden välisestä riippuvuudesta (in Finnish, summary in English, “The dependence of forest fire danger on meteorological factors”). Acta Forestalia Fennica 67Google Scholar
  41. Fuentes ER, Segura AM, Holmgren M (1994) Are the responses of matorral shrubs different from those in an ecosystem with reputed fire history? In: Moreno JM, Oechel WC (eds) The role of fire in Mediterranean-type ecosystems. Ecological studies 107. Springer-Verlag, New York, pp 16–25CrossRefGoogle Scholar
  42. Furyaev VV (1996) Rol pozharov v protsesse lesoobrazovaniya. The role of fires in the process of forest formation. Novosibirsk. In RussianGoogle Scholar
  43. Geiger R (1948) Neue Unterlagen für eine Waldbrandbekämpfung 2.Teil. Witterungsbedingungen für Großwaldbrände. Mitteilungen des Reichsinstitutes für Forst- und Holzwirtschaft Nr. 5Google Scholar
  44. Gill AM, Groves RH, Noble IR (1981) Fire and the Australian Biota. Australian Academy of Science, CanberraGoogle Scholar
  45. Granström A (1993) Spatial and temporal variation in lightning ignitions in Sweden. J Veg Sci 4:737–744CrossRefGoogle Scholar
  46. Hardy C (2005) Wildland fire hazard and risk: problems, definitions, and context. Forest Ecol Manag 211:73–82CrossRefGoogle Scholar
  47. Henderson M, Kalabokidis K, Marmaras E, Konstantinidis P, Marangudakis M (2005) Fire and society: a comparative analysis of wildfire in Greece and the United States. Hum Ecol Rev 12(2):169–182Google Scholar
  48. Hill J, Stellmes M, Udelhoven T, Röder A, Sommer S (2008) Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations. Global Planet Change 64:146–157CrossRefGoogle Scholar
  49. Holdsworth AR, Uhl C (1997) Fire in eastern Amazonian logged rain forest and potential for fire reduction. Ecol Appl 7:713–725CrossRefGoogle Scholar
  50. Johnson EA (1992) Fire and the vegetation dynamics: studies from the North American boreal forest. Cambridge studies in ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. JRC-IES (2008) Forest fires in Europe. Report no 9/2009. JRC Scientific and Technic Reports, p 88Google Scholar
  52. Karpachevskiy M (2004) Forest fires in the Russia taiga. Taïga Rescue Network: 8Google Scholar
  53. Keeley JE (1982) Distribution of lightning and man-caused wildfires in California. In: Conrad CE and Oechel WC (eds) Dynamics and management of Mediterranean-type ecosystems. United States Department of Agriculture, Forest Service, PSW-58, pp 431–437Google Scholar
  54. Keeley JE, Keeley SC (1988) Chaparral. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, New York, pp 165–207Google Scholar
  55. Keeley JE, Fotheringham CJ, Moritz MA (2004) Lessons from the 2003 wildfires in southern California. J For 102:26–31Google Scholar
  56. Keränen J (1929) Blitzschlag als zünder der waldbrande im nördlichen Finnland (in German). Acta Forestalia Fennica 34:25Google Scholar
  57. Komarek EV (1964) The natural history of lightning. Third annual tall timbers fire ecology conference, Tallahassee, Florida, pp 139–183Google Scholar
  58. Koutsias N, Allgöwer B, Conedera M (2002) What is common in wildland fire occurrence in Greece and Switzerland?—Statistics to study fire occurrence pattern. In: Viegas DX (ed) Proceedings of the 4th international conference on forest fire research, Luso, November 18–23, Millpress Science Publishers Rotterdam, Netherlands, pp 14Google Scholar
  59. Koutsias N, Arianoutsou M, Kallimanis AS, Mallinis G, Halley JM, Dimopoulos P (2012) Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric Forest Meteorol 156:41–53CrossRefGoogle Scholar
  60. Kruger FJ, Bigalke RC (1984) Fire in fynbos. In: Tainton NM, Booysen PdeV (eds) Ecological effects of fire in South African ecosystems. Ecological studies 48. Springer-Verlag, New York, pp 67–114CrossRefGoogle Scholar
  61. Lampin C, Jappiot M, Morge D, Borgniet L (2005) Amélioration de la connaissance de l’origine des feux de forêt dans les 15 départements du Sud-Est. DPFM 2003/252 - Proposition no 03-08-22 du 22 août 2003Google Scholar
  62. Lampin C, Jappiot M, Morge D, Vennetier M (2006) Statistical and spatial analysis of forest fire ignition points: a study case in South of France. Forest Ecol Manag 234:S12Google Scholar
  63. Langhart R, Bachmann A, Allgöwer B (1998) Spatial and temporal patterns of fire occurrence (Canton of Grison, Switzerland). In: Viegas DX (ed) Proceedings of the 3rd international conference on forest fire research/14th conference on fire and forest meteorology, Luso, Portugal, November, 16–20, Vol. 2, pp 2279–2292Google Scholar
  64. Larjavaara M (2005) Climate and forest fires in Finland—influence of lightning-caused ignitions and fuel moisture. Dissertationes Forestales 5. Yliopistopaino, HelsinkiGoogle Scholar
  65. Larjavaara M, Kuuluvainen T, Tanskanen H, Venäläinen A (2004) Variation in forest fire ignition probability in Finland. Silva Fenn 38(3):253–266Google Scholar
  66. Larjavaara M, Pennanen J, Tuomi TJ (2005a) Lightning that ignites forest fires in Finland. Agric Forest Meteorol 132:171–180CrossRefGoogle Scholar
  67. Larjavaara M, Kuuluvainen T, Rita H (2005b) Spatial distribution of lightning-ignited forest fires in Finland. Forest Ecol Manag 208:177–188CrossRefGoogle Scholar
  68. Lazaro A, Montiel C (2010). Overview of prescribed burning policies and practices in Europe and other countries. In: Sarde-Silva J, Rego F, Fernandes P and Rigolot E (eds) Towards integrated fire management-outcomes of the European project fire paradox, European Forest Institute Research Report 23, pp 137–150Google Scholar
  69. Le Page Y, Oom D, Silva J, Jönsson P, Pereira J (2010) Seasonality of vegetation fires as modified by human action: observing the deviation from eco climatic fire regimes. Global Ecol Biogeogr 19:575–588Google Scholar
  70. Lekakis JN (1995) Social and ecological correlates of rural fires in Greece. J Environ Manag 43:41–47CrossRefGoogle Scholar
  71. Leone V (1999) Los incendios en el Mediodıa Italiano. In: Araque Jimenez E (ed) Incendioshistoricos una aproximacion multidisciplinar. Universidad Internacional de Andalucıa, SevilleGoogle Scholar
  72. Leone V, Vita F (1982) Incendi boschivi e marginalita′ economica: il caso della. Puglia Cellulosa e Carta 7(8):41–57Google Scholar
  73. Leone V, Koutsias N, Martínez J, Vega-García C, Allgöwer B, Lovreglio R (2003) The human factor in fire danger assessment. In: Chuvieco E (ed) Wildland fire danger estimation and mapping: the role of remote sensing data. World Scientific, Hackensack, pp 143–196CrossRefGoogle Scholar
  74. Loboda TV (2009) Modelling fire danger in data-poor regions: a case study from the Russian Far East. Int J Wildland Fire 18:19–35CrossRefGoogle Scholar
  75. Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2006) New tools for the analysis of fire causes and their motivations: the Delphi technique. Forest Ecol Manag 234(1):18–33CrossRefGoogle Scholar
  76. Lovreglio R, Leone V, Giaquinto P, Notarnicola A (2010) Wildfire cause analysis: four case-studies in southern Italy. iForest 3:8–15CrossRefGoogle Scholar
  77. Maingi JK, Henry MC (2007) Factor influencing wildfire occurrence and distribution in eastern Kentucky, USA. Int J Wildland Fire 16:23–33CrossRefGoogle Scholar
  78. Mangiavillano A (2004) De l’éclosion du phénomène à l’émergence d’incendie: utilisation combine de l’analyse spatiale et de la physique du feu pour localiser les espaces émetteurs. Mémoire de DEA de Géographie, Université d’AvignonGoogle Scholar
  79. Martínez J, Vega-García C, Chuvieco E (2009) Human-caused wildfire risk rating for prevention planning in Spain. J Environ Manag 90:1241–1252CrossRefGoogle Scholar
  80. Maselli R, Botai L, Conese C (1996) Evaluation of forest fire risk by the analysis of environmental data and TM images. Int J Remote Sens 17(7):1417–1423CrossRefGoogle Scholar
  81. Miranda BR, Sturtevant BR, Stewart SI, Hammer RB (2012) Spatial and temporal drivers of wildfire occurrence in the context of rural development in northern Wisconsin, USA. Int J Wildland Fire 21:141–154CrossRefGoogle Scholar
  82. Missbach K (1990) Zur Auswertung der Waldbrandstatistik der DDR. Forstwirtschaft Berlin 40:3Google Scholar
  83. Mollicone D, Eva HD, Achard F (2006) Human role in Russian wildfires. Nature 440:436–437CrossRefGoogle Scholar
  84. Moreira F, Rego FC, Ferreira PG (2001) Temporal (1958–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence. Landsc Ecol 16:557–567CrossRefGoogle Scholar
  85. Moreira F, Vaz P, Catry F, Silva JS (2009) Regional variations in wildfire susceptibility of land-cover types in Portugal: implications for landscape management to minimize fire hazard. Int J Wildland Fire 18:563–574CrossRefGoogle Scholar
  86. Moreira F, Viedma O, Arianoutsou M, Curt T, Koutsias N, Rigolot F, Barbati A, Corona P, Vaz P, Xanthopoulos G, Mouillot F, Bilgili E (2011) Landscape-wildfire interactions in southern Europe: implications for landscape management. J Environ Manag 92:2389–2402CrossRefGoogle Scholar
  87. Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 9:199–206CrossRefGoogle Scholar
  88. Noga LG, Tikhonov VV (1979) O vozniknovenii lesnykh pozharov ot groz. [On the occurrence of forest fires from lightning.] Lesnoe khozyaistvo 6:58–59. In RussianGoogle Scholar
  89. NWCG (2006) Glossary of wildland fire terminology. National Wildfire Coordinating Group, PMS 205, Boise, IdahoGoogle Scholar
  90. Odintsov DI (1995) Okhrana lesov ot ognya—zadacha obshchaya. [Forest protection against fire as a common task.] Lesnoe khozyaistvo 2:28–31. In RussianGoogle Scholar
  91. Padilla M, Vega-García C (2011) On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int J Wildland Fire 20:46–58Google Scholar
  92. Pereira JMC, Carreiras JMB, De Vasconcelos PMJ (1998) Exploratory data analysis of the spatial distribution of wildfires in Portugal, 1980–1989. Geogr Syst 5(4):355–390Google Scholar
  93. Pew KL, Larsen CPS (2001) GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rainforest of Vancouver Island, Canada. Forest Ecol Manag 140:1–18CrossRefGoogle Scholar
  94. Prestemon JP, Butry DT (2005) Time to burn: modelling wildland arson as an autoregressive crime function. Am J Agric Econ 87:756–770CrossRefGoogle Scholar
  95. Pyne SJ (2001) Fire in America. Princeton University Press, PrincetonGoogle Scholar
  96. Richardson DM, van Wilgen BW (1992) Ecosystem, community and species response to fire in mountain Fymbos: conclusions from Swartboskloof experiment. In: van Wilgen BW, Richardson DM, Kruger FJ, van Hensbergen HJ (eds) Fire in South African mountain Fynbos, ecological studies 93. Springer-Verlag, Berlin, pp 273–284CrossRefGoogle Scholar
  97. Ricotta C, Guglietta D, Migliozzi A (2012) No evidence of increased fire risk due to agricultural land abandonment in Sardinia (Italy). Natural Hazards Earth Syst Sci 12:1333–1336. doi: 10.5194/nhess-12-1333-2012 CrossRefGoogle Scholar
  98. Romero-Calcerrada R, Perry GLW (2004) The role of land abandonment in landscape dynamics in the SPA ‘Encinares del río Alberche y Cofio, Central Spain, 1984–1999. Landsc Urban Plan 66:217–232Google Scholar
  99. Romero-Calcerrada R, Novillo J, Millington JDA, Gomez-Jimenez I (2008) GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landsc Ecol 23:341–354CrossRefGoogle Scholar
  100. Ruffner CM, Abrams MD (1998) Lightning strikes and resultant fires from archival (1912–1917) and current (1960–1997) information in Pennsylvania. J Torrey Bot Soc 125:249–252. doi: 10.2307/2997223 CrossRefGoogle Scholar
  101. Russell-Smith J, Ryan PG, Durieu R (1997) A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J Appl Ecol 34:748–766CrossRefGoogle Scholar
  102. San-Miguel-Ayanz J, Camia A (2010) Forest fires. In: Mapping the impacts of natural hazards and technological accidents in Europe: an overview of the last decade. EEA Technical report No 13/2010, Publications Office of the European Union, Luxembourg, pp 49–55Google Scholar
  103. San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A, Strobl P, Liberta G, Giovando C, Boca R, Sedano F, Kempeneers P, McInerney D, Withmore C, Santos de Oliveira S, Rodrigues M, Durrant T, Corti P, Oehler F, Vilar L, Amatulli G, (2012) Comprehensive monitoring of wildfires in Europe: the European forest fire information system (EFFIS). In: Tiefenbacher J (ed) Approaches to managing disaster—assessing hazards, emergencies and disaster impacts, InTech, doi: 10.5772/1112
  104. Santos De Oliveira S, Camia A, San-Miguel-Ayanz J (2009) First steps towards a long term forest fire risk of Europe. In: Chuvieco E, Lasaponara R (eds) Proceedings of the VII international EARSeL workshop—advances on remote sensing and GIS applications in forest fire management. Potenza (Italy), Il Segno, pp 79–83Google Scholar
  105. Sebastián-López A, Salvador-Civil R, Gonzalo-Jimenez J, San-Miguel-Ayanz J (2008) Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe. Eur J Forest Res 127:149–163CrossRefGoogle Scholar
  106. Sergienko VN (1996) Sokhranim li nashi lesa? [Will we be able to preserve our forest?]. Lesnoe khozyaistvo 3:5–6 In RussianGoogle Scholar
  107. Sergienko VN, 19 Sergienko VN (1999) Borba s lesnymi pozharami: problemy I zadachi. [Fight against forest fires: problems and tasks.] Lesnoe khozyaistvo 4:47–51. In RussianGoogle Scholar
  108. Shlisky A, Waugh J, Gonzalez P, Gonzalez M, Manta M, Santoso H, Alvarado E, Ainuddin Nuruddin A, Rodríguez-Trejo DA, Swaty R, Schmidt D, Kaufmann M, Myers R, Alencar A, Kearns F, Johnson D, Smith J, Zollner D, Fulks W (2007) Fire, ecosystems and people: threats and strategies for global biodiversity conservation. The Nature Conservancy, ArlingtonGoogle Scholar
  109. Sofronov MA, Vakurov AD (1981) Ogon v lesu. [Fire in the forest]. Nauka, Novosibirsk In RussianGoogle Scholar
  110. Stocks BJ, Mason JA, Todd JB, Bosch EM, Wotton BM (2003) Large forest fires in Canada, 1959–1997. J Geophys Res 108: FFR5-1-FFR5-12Google Scholar
  111. Sturtevand BR, Cleland DT (2007) Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int J Wildland Fire 16:398–413CrossRefGoogle Scholar
  112. Syphard AD, Clarke KC, Franklin J (2007a) Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landsc Ecol 22:431–445CrossRefGoogle Scholar
  113. Syphard AD, Radeloff VC, Keeley JE, Hawbaker TJ, Clayton MK, Stewart SI, Hammer RB (2007b) Human influence on California fire regimes. Ecol Appl 17(5):1388–1402CrossRefGoogle Scholar
  114. Syphard AD, Radeloff VC, Keuler NS, Taylor RS, Hawbaker TJ, Stewart SI, Clayton MK (2008) Predicting spatial patterns of fire on a southern California landscape. Int J Wildland Fire 17:602–613CrossRefGoogle Scholar
  115. Tabara D, Sauri D, Cerdan R (2003) Forest fire risk management and public participation in changing socio-environmental conditions: a case study in a Mediterranean region. Risk Anal 23:249–260CrossRefGoogle Scholar
  116. Thompson MP, Calkin DE, Finney MA, Ager AA, Gilbertson-Day JW (2011) Integrated national-scale assessment of wildfire risk to human and ecological values. Stoch Environ Res Risk Assess. doi: 10.1007/s00477-011-0461-0 Google Scholar
  117. Tuček J, Majlingová A (2009) Forest fire vulnerability analysis, 219-230. In: Strelcova K, et al. (eds) Bioclimatology and natural hazards. doi: 10.1007/978-8876-6-19
  118. Tuomi TJ (2002) Lightning observations in Finland. Finnish Meteorological Institute, HelsinkiGoogle Scholar
  119. Tuomi TJ (2004) Lightning observations in Finland. Finnish Meteorological Institute, HelsinkiGoogle Scholar
  120. Vannière B, Colombaroli D, Chapron E, Leroux A, Tinner W, Magny M (2008) Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat Sci Rev 27:1181–1196CrossRefGoogle Scholar
  121. Vasilakos C, Kalabokidis K, Hatzopoulos J, Kallos G, Matsinos J (2007) Integrating new methods and tools in fire danger rating. Int J Wildland Fire 16(3):306–316CrossRefGoogle Scholar
  122. Vasilakos C, Kalabokidis K, Hatzopoulos J, Matsinos J (2008) Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Natural Hazards, pp 1–19Google Scholar
  123. Vazquez A, Moreno JM (1993) Sensitivity of fire occurrence to meteorological variables in Mediterranean and Atlantic areas of Spain. Landsc Urban Plan 24:129–142CrossRefGoogle Scholar
  124. Vazquez A, Moreno JM (1998) Patterns of lightning-, and people-caused fires in Peninsular Spain. Int J Wildland Fire 812:103–115CrossRefGoogle Scholar
  125. Vazquez A, Moreno JM (2001) Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecol Manag 147:55–65CrossRefGoogle Scholar
  126. Vega-García C, Woodard P, Lee B (1993) Geographic and temporal factors that seem to explain human-caused fire occurrence in Whitecourt Forest, Alberta. In: Proceedings of symposium on GIS’93 international. Vancouver 1:115–119Google Scholar
  127. Vega-García C, Woodard T, Adamowicz WL, Lee B (1995) A logit model for predicting the daily occurrence of human caused forest fires. Int J Wildland Fire 5(2):101–111CrossRefGoogle Scholar
  128. Velez R (2000) La prevencion. In: García-Brage A (ed) La defensa contra incendios forestales fundamentos y experiencias. McGraw-Hill/Interamericana de Espana, MadridGoogle Scholar
  129. Vigilante T, Bowman DMJS, Fisher R, Russell-Smith J, Yates C (2004) Contemporary landscape burning patterns in the far North Kimberley region of north-west Australia: human influences and environmental determinants. J Biogeogr 31:1317–1333CrossRefGoogle Scholar
  130. Weck J (1950) Waldbrand, seine Vorbeugung und Bekämpfung. Brandschutz-Fachbuchreihe 19, W. Kohlhammer VerlagGoogle Scholar
  131. Yang J, He HS, Shifley SR, Gustafson EJ (2007) Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands. Forest Sci 53:1–15Google Scholar
  132. Zakharov AN, Stolyrchuk AV (1977) Pozhary ot groz v lesakh Tyumenskoy oblasti. [Fires caused by thunderstorms in forest of Tyumen Oblast.]. Lesnoe khozyaistvo 7:74–75 In RussianGoogle Scholar
  133. Zhai Y, Munn IA, Evans DL (2003) Modelling forest fire probabilities in the south central United States using FIA data. South J Appl For 27:11–17Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Anne Ganteaume
    • 1
    Email author
  • Andrea Camia
    • 2
  • Marielle Jappiot
    • 1
  • Jesus San-Miguel-Ayanz
    • 2
  • Marlène Long-Fournel
    • 1
  • Corinne Lampin
    • 1
  1. 1.IRSTEA, UR EMAXAix-en-ProvenceFrance
  2. 2.European Commission, Joint Research Centre (JRC)IspraItaly

Personalised recommendations