Environmental Management

, Volume 49, Issue 6, pp 1150–1162 | Cite as

The Impact of Map and Data Resolution on the Determination of the Agricultural Utilisation of Organic Soils in Germany

  • Norbert Roeder
  • Bernhard Osterburg


Due to its nature, agricultural land use depends on local site characteristics such as production potential, costs and external effects. To assess the relevance of the modifying areal unit problem (MAUP), we investigated as to how a change in the data resolution regarding both soil and land use data influences the results obtained for different land use indicators. For the assessment we use the example of the greenhouse gas (GHG) emissions from agriculturally used organic soils (mainly fens and bogs). Although less than 5 % of the German agricultural area in use is located on organic soils, the drainage of these areas to enable their agricultural utilization causes roughly 37 % of the GHG emissions of the German agricultural sector. The abandonment of the cultivation and rewetting of organic soils would be an effective policy to reduce national GHG emissions. To assess the abatement costs, it is essential to know which commodities, and at what quantities, are actually produced on this land. Furthermore, in order to limit windfall profits, information on the differences of the profitability among farms are needed. However, high-resolution data regarding land use and soil characteristics are often not available, and their generation is costly or the access is strictly limited because of legal constraints. Therefore, in this paper, we analyse how indicators for land use on organic soils respond to changes in the spatial aggregation of the data. In Germany, organic soils are predominantly used for forage cropping. Marked differences between the various regions of Germany are apparent with respect to the dynamics and the intensity of land use. Data resolution mainly impairs the derived extent of agriculturally used peatland and the observed intensity gradient, while its impact on the average value for the investigated set of land-use indicators is generally minor.


Peatland Agriculture Modifiable areal unit problem Land use intensity 



Thanks to Thomas Schmidt and Heike Nitsch for commenting on an earlier draft of this paper and for the useful comments of the two anonymous reviewers. The research was funded by the Johann Heinrich von Thünen Institute of Rural Studies.


  1. Bach M, Breuer L, Frede HG, Huisman JA, Otte A, Waldhardt R (2006) Accuracy and congruency of three different digital land-use maps. Landscape and Urban Planning 78:289–299CrossRefGoogle Scholar
  2. BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) (2003) GUEK 200 (Geologische Uebersichtskarte der Bundesrepublik Deutschland 1:200 000). Hannover, GermanyGoogle Scholar
  3. BGR (Bundesanstalt für Geowissenschaften und Rohstoffe) (2010) BUEK 1000 (Bodenuebersichtskarte von Deutschland 1:1 000 000 Hannover, GermanyGoogle Scholar
  4. BKG (Bundesamt für Kartographie und Geodäsie) (2008) Basis-DLM (Digitales Basis-Landschaftsmodell) 1:25 000. Frankfurt, GermanyGoogle Scholar
  5. Boden Ad-hoc AG (2005) Bodenkundliche Kartieranleitung, 5th edn. Hannover, GermanyGoogle Scholar
  6. Dierschke H, Briemle G (2002) Kulturgrasland: Wiesen. Weiden und verwandte Staudenfluren, Stuttgart, GermanyGoogle Scholar
  7. Drösler M, Freibauer A, Adelmann W, Augustin J, Bergman L, Beyer C, Chojnicki B, Förster C, Giebels M, Görlitz S, Höper H, Kantelhardt J, Liebersbach H, Hahn-Schöfl M, Minke M, Petschow U, Pfadenhauer J, Schaller L, Schägner P, Sommer M, Thuille M, Wehrhan M (2011) Klimaschutz durch Moorschutz in der Praxis. Arbeitsberichte aus dem vTI-Institut für Agrarrelevante Klimaforschung (04/2011). Braunschweig, Berlin, Freising, Jena, Müncheberg, Wien
  8. Eggelsmann R, Barthels R (1975) Oxidativer Torfverzehr im Niedermoor in Abhängigkeit von Entwässerung, Nutzung und Düngung. Mitteilung der Deutschen Bodenkundlichen Gesellschaft 22:215–221Google Scholar
  9. EUROSTAT (2009) Statistical disclosure control. Accessed date 25 April 2009
  10. FAO (2006) World reference base for soil resources. World soil resources report 103 Rome
  11. FDZ (Research Data Centres of the Federal Statistical Office and the Statistical Offices of the Länder) (2010) AFID-panel agriculture (Farm structure Survey (FSS) 1999, 2003 and 2007Google Scholar
  12. Giri C, Zhiliang Zhu Z, Reed B (2005) Comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sensing of Environment 94:123–132CrossRefGoogle Scholar
  13. Haenel HD (ed) (2010) Calculation of emissions from German agriculture—national emission inventory report (NIR) 2010 for 2008. Landbauforschung Völkenrode (334). Braunschweig, GermanyGoogle Scholar
  14. Havlik P, Schneider UA, Schmid E, Bottcher H, Fritz S, Skalsky R, Aoki K, De Cara S, Kindermann G, Kraxner F, Leduc S, McCallum I, Mosnier A, Sauer T, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energy Policy 39:5690–5702CrossRefGoogle Scholar
  15. Höper H (2007) Freisetzung von Treibhausgasen aus deutschen Mooren. Telma 37:85–116Google Scholar
  16. IPCC (2006) Good practice guidance for land use, land use change and forestry. Geneva. Switzerland
  17. Kantelhardt J, Hoffmann H (2001) Economic evaluation of ecological management instructions for agriculture—the example of the Donauried. Berichte über Landwirtschaft 79:415–436Google Scholar
  18. Keil, M, Kiefl R, Strunz G, Mehl H, Mohaupt-Jahr B (2004) Examples and experiences of the update interpretation process for CLC2000 in Germany. In: Proceedings CORINE land cover workshop, 20–21 January 2004, Berlin. UBA-Texte 04/04: 52-61Google Scholar
  19. Lösel G (2005) Informationsgüte kleinmassstäbiger Bodenkarten—Probleme und Entwicklungsmöglichkeiten. PhD-Thesis. Universität Hannover. GermanyGoogle Scholar
  20. Oleszczuk R, Regina K, Szajdak L, Höper H, Maryganova V (2008) Impacts of agricultural utilization of peat soils on the greenhouse gas balance. In Strack M (ed) Peatlands and climate change, Jyväskylä, Finland, pp 70–97. Accessed Date 02 Oct 2008
  21. Openshaw S, Taylor PJ (1979) A million or so correlation coefficients: Three experiments on the modifiable areal unit problem. In Wrigley N (ed) Statistical applications in the spatial sciences. London, pp 127–144Google Scholar
  22. Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Global Change Biology 17:2415–2427CrossRefGoogle Scholar
  23. Röder N, Grützmacher F (2012) Emissionen aus landwirtschaftlich genutzten Mooren–Vermeidungskosten und Anpassungsbedarf. Natur und Landschaft 87:56–61Google Scholar
  24. Sbresny J (1997) Fehlerquellen in raumbezogenen Informationssystemen. Geologisches Jahrbuch. Series F (33). Hannover, GermanyGoogle Scholar
  25. Schaller L, Kantelhardt, J (2009) Prospects for climate friendly peatland management—results of a socioeconomic case study in Germany. Paper presented at the 83rd annual conference of the Agricultural Economics Society, March 30—April 1, 2009, Dublin, p 23. Accessed Date 16 March 2009
  26. Schmidt C, Rounsevell M, La Jeunesse I (2006) The limitations of spatial land use data in environmental analysis. Environmental Science & Policy 9:174–188CrossRefGoogle Scholar
  27. Schothorst CJ (1977) Subsidence of low moor peat soils in the Western Netherlands. Geoderma 17:265–291CrossRefGoogle Scholar
  28. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240CrossRefGoogle Scholar
  29. UBA (Umweltbundesamt) (2010) National inventory report for the German Greenhouse Gas Inventory 1990–2008 Accessed Date 14 June 2010
  30. Zitzmann A (2003) Die Geologische Übersichtskarte 1:200 000—von der Karte bis zur Sachdatenbank. Z dt geol Ges 154:121–139Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Johann Heinrich von Thünen Institute, Institute of Rural StudiesBraunschweigGermany

Personalised recommendations