Environmental Management

, Volume 49, Issue 5, pp 1037–1053 | Cite as

An Evaluation of Several In-Lake Restoration Techniques to Improve the Water Quality Problem (Eutrophication) of Saint-Augustin Lake, Quebec, Canada

  • Rosa Galvez-Cloutier
  • Sumathi K. M. Saminathan
  • Clotilde Boillot
  • Gaëlle Triffaut-Bouchet
  • Alexandre Bourget
  • Gabriel Soumis-Dugas


Increasing phosphorus (P) content and decreasing water quality of Saint-Augustin Lake, Quebec City, Canada, has led to implementation of an Integrated Watershed Management Plan to restore the lake. As a part of the plan, the effects of different restoration techniques on lake water quality and biological community (i.e., biological compatibility) were assessed during an isolated water enclosure study and laboratory microcosm assay, respectively. The restoration techniques include: (i) coagulation of P by alum only (20 mg L−1), (ii) active capping of sediments using a calcite layer of 10 cm, and (iii) a complete method involving both alum coagulation and calcite capping. The results showed that the total P (TP) was greatly decreased (76–95 %) by alum + calcite, followed by calcite only (59–84 %). Secchi depth was 106 % greater and chlorophyll a concentrations were declined by 19–78 % in the enclosure which received both alum and calcite. Results of the biological compatibility test showed that total phytoplankton biomass declined by 31 % in microcosms composed of alum + calcite. No significant (P > 0.05) toxic effect was found on the survival of Daphnia magna and Hyalella azteca in both alum only and alum + calcite microcosms. Although the alum + calcite technique impaired the survival of Chironomus riparius, the midge emergence was much higher compared to alum only and control. Overall, the alum + calcite application was effective in controlling P release from sediment and lowering water column P concentrations, and thus improving the water quality and aquatic life of Saint-Augustin Lake. However, the TP concentrations are still higher than the critical limit (20 μg L−1) for aquatic life and the water column remained in the eutrophic state even after treatment. Increased TP concentrations, to higher than ambient levels of the lake, in the water column of all four enclosures, due to bioturbation artefact triggered by the platform installation, likely cause insufficient dosages of alum and/or calcite applied and reduced their effectiveness.


Eutrophication Phosphorus Integrated watershed management plan Restoration technique Water quality Microcosm assay tests 



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), Ministère du Développement durable, de l’Environnement et des Parcs (MDDEP), Ministère des Transports du Québec (MTQ), Ville de Québec, Ville de Saint-Augustin-de-Desmaures for support of this work.


  1. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2: a geochemical assessment model for environmental systems: version 3 User’s manual. Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, p 11Google Scholar
  2. APHA (2005) Standard methods for the examination of water and wastewaters, 21st edn. American Public Health Association, Washington DCGoogle Scholar
  3. Arcand B (1991) A l’aube d’un quatrième siècle: Saint-Augustin-de-Desmaures, 1691–1991. Municipalitè de Saint-Augustin-de-Desmaures, QuèbecGoogle Scholar
  4. Avnimelech Y (1980) Calcium-carbonate-phosphate surface complex in calcareous systems. Nature 288:255–257CrossRefGoogle Scholar
  5. Berg U, Neumann T, Donnert D, Nüesch R, Stüben D (2004) Sediment capping in eutrophic lakes: efficiency of undisturbed calcite barriers to immobilize phosphorus. Appl Geochem 19:1759–1771CrossRefGoogle Scholar
  6. Boillot C, Triffault-Bouchet G, Soumis-Dugas G, Martel L, Galvez-Cloutier R (2010) Évaluation de la compatibilité écologique d’une technique de restauration pour lacs eutrophes vis-à-vis du lac Saint-Augustin et de la baie Missisquoi. Ministère du Développement durable, de l’Environnement et des Parcs du Québec et Université Laval, p 215Google Scholar
  7. Cardin R, Bastien C, Blais S, Robert C (2006) Identification des cyanobactéries en microscopie inversée. 10ème colloque annuel du Chapitre Saint-Laurent (SRA-SETAC), Québec, CanadaGoogle Scholar
  8. CEAEQ (2007) Détermination des métaux à l’état de trace en conditions propres dans l’eau: méthode par spectrométrie d’émission au plasma d’argon et détection par spectrométrie de masse. CEAEQ (Centre d’Expertise en Analyse Environnemental du Québec), Ministère du Développement durable, de l’Environnement et des Parcs du Québec, p 29Google Scholar
  9. CEAEQ (2008) Détermination du phosphore total dans les eaux naturelles: minéralisation au persulfate; méthode colorimétrique automatisée; procédures adaptées pour le phosphore en teneur élevée et à l’état de trace. CEAEQ (Centre d’Expertise en Analyse Environnemental du Québec), Ministère du Développement durable, de l’Environnement et des Parcs du Québec, p 29Google Scholar
  10. Clément B, Cadier C (1998) Development of a new laboratory freshwater/sediment microcosm test. Ecotoxicology 7:279–290CrossRefGoogle Scholar
  11. Cooke GD, Heath RD, Kennedy RH, McComas MR (1982) Change in trophic lake state and internal phosphorus release after aluminum sulfate application. Water Resour Bull 18:699–705CrossRefGoogle Scholar
  12. Cooke GD, Welch EB, Martin AB, Fulmer DG, Hyde JB, Schrieve GD (1993) Effectiveness of Al, Ca, and Fe salts for control of internal phosphorus loading in shallow and deep lakes. Hydrobiologia 253:323–335CrossRefGoogle Scholar
  13. Cooke GD, Welch EB, Peterson SA, Nichols SA (2005) Restoration and management of lakes and reservoirs. Taylor & Francis/CRC Press, Boca Raton, p 616CrossRefGoogle Scholar
  14. Driscoll CT, Postek KM (1996) The chemistry of aluminum in surface water. In: Sposito G (ed) The environmental chemistry of aluminum. CRC Press, Lewis, pp 363–418Google Scholar
  15. Ellwood NTW, Albertano P, Galvez R, Funiciello R, Mosello R (2009) Water chemistry and trophic evaluation of Lake Albano (Central Italy): a four year water monitoring study. J Limnol 68:288–303CrossRefGoogle Scholar
  16. EXXEP (2002) Diagnose écologique. La grande corvée du bassin versant du lac Saint-Augustin, p 70Google Scholar
  17. Fordham GF, Driscoll CT (1989) Short term changes in the acid/base chemistry of two lakes following calcium carbonate treatment. Can J Fish Aquat Sci 46:306–314CrossRefGoogle Scholar
  18. Galvez-Cloutier R, Sanchez M (2007) Trophic status evaluation for 154 Lakes in Quebec, Canada: monitoring and recommendations. Water Qual Res J Can 42:252–268Google Scholar
  19. Galvez-Cloutier R, Leroueil S, Allier D, Locat J, Arsenault S (2006) A combined method: precipitation and capping, to attenuate eutrophication in Canadian lakes. ASTM Special Technical Publications 1482:232–239Google Scholar
  20. Gillis PL, Chow-Fraser P, Rainville JF, Ross PE, Wood CM (2005) Daphnia need to be gut-cleared too: the effect of exposure to an ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. Aquat Toxicol 71:143–154CrossRefGoogle Scholar
  21. Gundersen DT, Bustaman S, Seim WK, Curtis LR (1994) pH, hardness, and humic acid influence aluminum toxicity to rainbow trout (Oncorhynchus mykiss) in weakly alkaline waters. Can J Fish Aquat Sci 51:1345–1355CrossRefGoogle Scholar
  22. Holz JC, Hoagland KD (1996) Experimental microcosm study of the effects of phosphorus reduction on plankton community structure. Can J Fish Aquat Sci 53:1754–1764CrossRefGoogle Scholar
  23. Holz JC, Hoagland KD (1999) Effects of phosphorus reduction on water quality: comparison of alum-treated and untreated portions of a hypereutrophic lake. Lake Reserv Manage 15:70–82CrossRefGoogle Scholar
  24. Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction - some recent findings and challenges ahead. Hydrobiologia 584:239–252CrossRefGoogle Scholar
  25. Kennedy RH, Cooke GD (1982) Control of lake phosphorus with aluminum sulphate: dose determination and application techniques. Water Resour Bull 18:389–395CrossRefGoogle Scholar
  26. Kleiner J (1988) Coprecipitation of phosphate with calcite in lake water: a laboratory experiment modelling phosphorus removal with calcite in Lake Constance. Water Res 22:1259–1265CrossRefGoogle Scholar
  27. Lewis WM, Wurtsbaugh WA (2008) Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. Int Rev Hydrobiol 93:446–465CrossRefGoogle Scholar
  28. Matisoff G, Wang X (1998) Solute transport in sediments by freshwater infaunal bioirrigators. Limnol Oceanogr 43:1487–1499CrossRefGoogle Scholar
  29. MDDEP (2008) Critères de qualité de l’eau de surface. Direction du suivi de l’état de l’environnement, Ministère du Développement durable, de l’Environnement et des Parcs, Québec (Canada), p. 506Google Scholar
  30. Niemisto J, Holmroos H, Horppila J (2011) Water pH and sediment resuspension regulating internal phosphorus loading in a shallow lake: field experiment on diurnal variation. J Limnol 70:3–10CrossRefGoogle Scholar
  31. Nusch E (1980) Comparaison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie-Beiheft Ergebnisse der Limnologie 14:14–36Google Scholar
  32. Özkundakci D, Hamilton DP, Scholes P (2010) Effect of intensive catchment and in-lake restoration procedures on phosphorus concentrations in a eutrophic lake. Ecol Eng 36:396–405CrossRefGoogle Scholar
  33. Paul WJ, Hamilton DP, Gibbs MM (2008) Low-dose alum application trialled as a management tool for internal nutrient loads in Lake Okaro, New Zealand. NZ J Mar Freshwat Res 42:207–217CrossRefGoogle Scholar
  34. Péry AR, Sulmon V, Mons R, Flammarion P, Lagadic L, Garric J (2003) A model to understand the confounding effects of natural sediments in toxicity tests with Chironomus riparius. Environ Toxicol Chem 22:2476–2481CrossRefGoogle Scholar
  35. Petterson K (1998) Mechanisms for internal loading of phosphorus in lakes. Hydrobiologia 374:21–25CrossRefGoogle Scholar
  36. Pienitz R, Roberge K, Vincent WF (2006) Three hundred years of human-induced change in an urban lake: paleolimnological analysis of Lac Saint-Augustin, Quebec City, Canada. Can J Bot 84:303–320CrossRefGoogle Scholar
  37. Prepas EE, Murphy TP, Crosby JM, Walty DT, Lim JT, Babin J, Chambers PA (1990) Reduction of phosphorus and chlorophyll a concentrations following CaCO3 and Ca(OH)2 additions to hypereutrophic Figure Eight Lake, Alberta. Environ Sci Technol 24:1252–1258CrossRefGoogle Scholar
  38. Prepas EE, Babin J, Murphy TP, Chambers PA, Sandland GJ, Serediak M (2001) Long-term effects of successive Ca(OH)2 and CaCO3 treatments on the water quality of two eutrophic hardwater lakes. Freshw Biol 46:1089–1103CrossRefGoogle Scholar
  39. Rai LC, Mallick N (1993) Heavy metal toxicity to algae under synthetic microcosm. Ecotoxicology 2:213–242CrossRefGoogle Scholar
  40. Reedyk S, Prepas EE, Chambers PA (2001) Effects of single Ca(OH)2 doses on phosphorus concentration and macrophyte biomass of two boreal, eutrophic lakes over 2 years. Freshwater Biol 46:1075–1087CrossRefGoogle Scholar
  41. Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51:356–363CrossRefGoogle Scholar
  42. Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson MJ, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reduction of nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Nat Acad Sci 105:11254–11258CrossRefGoogle Scholar
  43. Smolders R, Baillieul M, Blust R (2005) Relationship between the energy status of Daphnia magna and its sensitivity to environmental stress. Aquat Toxicol 73:155–170CrossRefGoogle Scholar
  44. Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509:135–145CrossRefGoogle Scholar
  45. Soumis-Dugas G, Triffaut-Bouchet G, Galvez R, Louis Martel L (2009) Ecotoxicological assessment of an in-lake remediation. J ASTM Int 6:14CrossRefGoogle Scholar
  46. Steimann A, Rediske R, Reddy KR (2004) The reduction of internal phosphorus loading using alum in Spring Lake, Michigan. J Environ Qual 33:2040–2048CrossRefGoogle Scholar
  47. Triffault-Bouchet G, Clément B, Blake G (2005) Assessment of contaminated sediments with an indoor freshwater/sediment microcosm assay. Environ Toxicol Chem 4:2243–2253CrossRefGoogle Scholar
  48. Triffault-Bouchet G, Daviau V, Galvez-Cloutier R, Bastien C, Martel L (2006) Ecotoxicological assessment of an in-lake rehabilitation method for an eutrophic lake - context and experimental design. Model site: Saint-Augustin Lake (Québec, Canada). 27th Annual Meeting – SETAC North America Montréal, Canada, 5 Nov 2006Google Scholar
  49. USEPA (2000) Methods for measuring toxicity and bioaccumulation of sediments-associated contaminants with freshwater invertebrates. EPA-600/R-66/064, 2nd edn. Environmental Research Laboratory, Duluth, p 192Google Scholar
  50. Welch EB, Cooke GD (1999) Effectiveness and longevity of phosphorus inactivation with alum. Lake Reserv Manage 15:5–27CrossRefGoogle Scholar
  51. Witters HE (1998) Chemical speciation dynamics and toxicity assessment in aquatic systems. Ecotoxicol Environ Saf 41:90–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rosa Galvez-Cloutier
    • 1
  • Sumathi K. M. Saminathan
    • 1
  • Clotilde Boillot
    • 1
    • 2
  • Gaëlle Triffaut-Bouchet
    • 2
  • Alexandre Bourget
    • 1
  • Gabriel Soumis-Dugas
    • 3
  1. 1.Department of Civil EngineeringLaval UniversityQuebecCanada
  2. 2.Division de l’Écotoxicologie et de l’Évaluation du risqueCEAEQQuebecCanada
  3. 3.Applied Ecotoxicology GroupCNRC Biotechnology Research InstituteMontrealCanada

Personalised recommendations