Environmental Management

, Volume 53, Issue 1, pp 94–111 | Cite as

Analyzing Human–Landscape Interactions: Tools That Integrate

Article

Abstract

Humans have transformed much of Earth’s land surface, giving rise to loss of biodiversity, climate change, and a host of other environmental issues that are affecting human and biophysical systems in unexpected ways. To confront these problems, environmental managers must consider human and landscape systems in integrated ways. This means making use of data obtained from a broad range of methods (e.g., sensors, surveys), while taking into account new findings from the social and biophysical science literatures. New integrative methods (including data fusion, simulation modeling, and participatory approaches) have emerged in recent years to address these challenges, and to allow analysts to provide information that links qualitative and quantitative elements for policymakers. This paper brings attention to these emergent tools while providing an overview of the tools currently in use for analysis of human–landscape interactions. Analysts are now faced with a staggering array of approaches in the human–landscape literature—in an attempt to bring increased clarity to the field, we identify the relative strengths of each tool, and provide guidance to analysts on the areas to which each tool is best applied. We discuss four broad categories of tools: statistical methods (including survival analysis, multi-level modeling, and Bayesian approaches), GIS and spatial analysis methods, simulation approaches (including cellular automata, agent-based modeling, and participatory modeling), and mixed-method techniques (such as alternative futures modeling and integrated assessment). For each tool, we offer an example from the literature of its application in human–landscape research. Among these tools, participatory approaches are gaining prominence for analysts to make the broadest possible array of information available to researchers, environmental managers, and policymakers. Further development of new approaches of data fusion and integration across sites or disciplines pose an important challenge for future work in integrating human and landscape components.

Keywords

Coupled human–natural system Spatial analysis Modeling Human–environment dynamics Simulation 

References

  1. Acevedo MF, Baird Callicott J, Monticino M et al (2008) Models of natural and human dynamics in forest landscapes: cross-site and cross-cultural synthesis. Geoforum 39:846–866. doi:10.1016/j.geoforum.2006.10.008 CrossRefGoogle Scholar
  2. Aitken S, Valentine G (2006) Approaches to human geography. SAGE, LondonGoogle Scholar
  3. Allison P (1995) Survival analysis using SAS: a practical guide, 1st ed. SAS, LondonGoogle Scholar
  4. An L (2012) Modeling human decisions in coupled human and natural systems: review of agent-based models. Ecol Model 229:25–36. doi:10.1016/j.ecolmodel.2011.07.010 CrossRefGoogle Scholar
  5. An L, Brown DG (2008) Survival analysis in land change science: integrating with GIScience to address temporal complexities. Ann Assoc Am Geogr 98:323–344CrossRefGoogle Scholar
  6. An L, Linderman MA, Qi J et al (2005) Exploring complexity in a human environment system: an agent-based spatial model for multidisciplinary and multiscale integration. Ann Assoc Am Geogr 95:54–79CrossRefGoogle Scholar
  7. An L, Brown DG, Nassauer JI, Low B (2011) Variations in development of exurban residential landscapes: timing, location, and driving forces. J Land Use Sci 6:13–32. doi:10.1080/1747423X.2010.500686 CrossRefGoogle Scholar
  8. An L, Zvoleff A, Liu J, Axinn WG (in preparation) Agent based modeling in coupled human and natural systems (CHANS): Lessons from a comparative analysisGoogle Scholar
  9. Anselin L, Lozano-Garcia N (2009) Spatial hedonic models. Palgrave handbook of econometrics Volume 2, Applied EconometricsGoogle Scholar
  10. Anselin L, Rey S (1991) Properties of tests for spatial dependence in linear regression models. Geogr Anal 23:112–131. doi:10.1111/j.1538-4632.1991.tb00228.x CrossRefGoogle Scholar
  11. Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5–22. doi:10.1111/j.0016-7363.2005.00671.x CrossRefGoogle Scholar
  12. Arthur WB (1999) Complexity and the economy. Science 284:107–109. doi:10.1126/science.284.5411.107 CrossRefGoogle Scholar
  13. Axelrod R, Cohen MD (2000) Harnessing complexity: organizational implications of a scientific frontier. Free, New YorkGoogle Scholar
  14. Axinn WG, Ghimire DJ (2011) Social organization, population, and land use. Am J Soc 117(1):209–258Google Scholar
  15. Axtell RL, Epstein JM, Dean JS et al (2002) Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proc Natl Acad Sci 99:7275–7279CrossRefGoogle Scholar
  16. Barber JS, Murphy SA, Axinn WG, Maples J (2000) Discrete-time multilevel hazard analysis. Sociol Methodol 30:201–235CrossRefGoogle Scholar
  17. Batty M, Xie Y (2005) Urban growth using cellular automata models. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI, Redlands, pp 151–172Google Scholar
  18. Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plan B Plan Design 24:159–164CrossRefGoogle Scholar
  19. Bell ML, Hobbs BF, Ellis H (2003) The use of multi-criteria decision-making methods in the integrated assessment of climate change: Implications for IA practitioners. Socio-Econ Plan Sci 37:289–316. doi:10.1016/S0038-0121(02)00047-2 CrossRefGoogle Scholar
  20. Benenson I, Torrens PM (2006) Front matter. Geosimulation. Wiley, New York, pp i–xxiiiCrossRefGoogle Scholar
  21. Berger PA (2006) Generating agricultural landscapes for alternative futures analysis: A multiple attribute decision-making model. Transact GIS 10:103–120. doi:10.1111/j.1467-9671.2006.00246.x CrossRefGoogle Scholar
  22. Bezlepkina I, Reidsma P, Sieber S, Helming K (2011) Integrated assessment of sustainability of agricultural systems and land use: methods, tools and applications. Agric Syst 104:105–109. doi:10.1016/j.agsy.2010.11.002 CrossRefGoogle Scholar
  23. Bithell M, Brasington J (2009) Coupling agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution. Environ Model Softw 24:173–190CrossRefGoogle Scholar
  24. Bivand R (2012) Spdep: spatial dependence: weighting schemes, statistics and models. Wiley, New YorkGoogle Scholar
  25. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis with R, 1st ed. Springer, New YorkGoogle Scholar
  26. Bogaert P, Fasbender D (2007) Bayesian data fusion in a spatial prediction context: a general formulation. Stoch Environ Res Risk Assess 21:695–709. doi:10.1007/s00477-006-0080-3 CrossRefGoogle Scholar
  27. Bolte JP, Hulse DW, Gregory SV, Smith C (2007) Modeling biocomplexity - Actors, landscapes and alternative futures. Environ Model Softw 22:570–579. doi:10.1016/j.envsoft.2005.12.033 CrossRefGoogle Scholar
  28. Bosco FJ (2006) Actor-network theory, networks, and relational approaches in human geography. Approaches to human geography. SAGE, London, pp 136–146Google Scholar
  29. Bousquet F, Le Page C (2004) Multi-agent simulations and ecosystem management: a review. Ecol Model 176:313–332. doi:10.1016/j.ecolmodel.2004.01.011 CrossRefGoogle Scholar
  30. Bousquet F, Barreteau O, D’Aquino P et al (2002) Multi-agent systems and role games: collective learning processes for ecosystem management. Complexity and ecosystem management. the theory and practice of multi-agent systems. Edward Elgar, Cheltenham, pp 248–286Google Scholar
  31. Brown I (2006) Modelling future landscape change on coastal floodplains using a rule-based GIS. Environ Model Softw 21:1479–1490. doi:10.1016/j.envsoft.2005.07.011 CrossRefGoogle Scholar
  32. Brown O (2008) Migration and climate change. International Organization for Migration, GenevaGoogle Scholar
  33. Brown DG, Robinson DT (2006) Effects of heterogeneity in residential preferences on an agent-based model of urban sprawl. Ecol soc 11:46Google Scholar
  34. Brown DG, Page S, Riolo R et al (2005) Path dependence and the validation of agent-based spatial models of land use. Int J Geogr Inf Sci 19:153–174CrossRefGoogle Scholar
  35. Bryan BA, Crossman ND, King D, Meyer WS (2011) Landscape futures analysis: assessing the impacts of environmental targets under alternative spatial policy options and future scenarios. Environ Model Softw 26:83–91. doi:10.1016/j.envsoft.2010.03.034 CrossRefGoogle Scholar
  36. Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. doi:10.1126/science.1187512 CrossRefGoogle Scholar
  37. Calder C, Lavine M, Müller P, Clark JS (2003) Incorporating multiple sources of stochasticity into dynamic population models. Ecology 84:1395–1402. doi:10.1890/0012-9658 CrossRefGoogle Scholar
  38. Castella JC, Trung TN, Boissau S (2005) Participatory simulation of land-use changes in the northern mountains of Vietnam: the combined use of an agent-based model, a role-playing game, and a geographic information system. Ecol Soc 10:27Google Scholar
  39. Chen X, Lupi F, An L et al (2012) Agent-based modeling of the effects of social norms on enrollment in payments for ecosystem services. Ecol Model 229:16–24. doi:10.1016/j.ecolmodel.2011.06.007 CrossRefGoogle Scholar
  40. Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x CrossRefGoogle Scholar
  41. Clarke K, Gaydos L (1998) Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. Int J Geogr Inf Sci 12:699–714CrossRefGoogle Scholar
  42. Clarke K, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environ Plan B Plan Design 24:247–261. doi:10.1068/b240247 CrossRefGoogle Scholar
  43. Corrado L, Fingleton B (2011) Multilevel modelling with spatial effects. University of Strathclyde Business School, Department of Economics, GlasgowGoogle Scholar
  44. Crawford TW, Messina JP, Manson SM, O’Sullivan D (2005) Complexity science, complex systems, and land-use research. Environ Plan B Plan Design 32:792–798CrossRefGoogle Scholar
  45. D’Aquino P, Barreteau O, Etienne M et al (2002) The Role Playing Games in an ABM participatory modeling process: outcomes from five different experiments carried out in the last five years. Integrated Assessment and Decision Support. 1st Biennial Meeting of the International Environmental Modelling and Software Society, LuganoGoogle Scholar
  46. Daconto G, Sherpa LN (2010) Applying scenario planning to park and tourism management in Sagarmatha National Park, Khumbu, Nepal. Mt Res Dev 30:103–112. doi:10.1659/MRD-JOURNAL-D-09-00047.1 CrossRefGoogle Scholar
  47. Dasgupta P (2008) Discounting climate change. J Risk Uncertain 37:141–169. doi:10.1007/s11166-008-9049-6 CrossRefGoogle Scholar
  48. Deadman P, Robinson D, Moran E, Brondizio E (2004) Colonist household decisionmaking and land-use change in the Amazon Rainforest: An agent-based simulation. Environ Plan B Plan Design 31:693–709CrossRefGoogle Scholar
  49. DeCanio SJ (2003) Economic models of climate change: a critique. Palgrave Macmillan, New YorkCrossRefGoogle Scholar
  50. Entwisle B, Malanson GP, Rindfuss RR, Walsh SJ (2008) An agent-based model of household dynamics and land use change. J Land Use Sci 3:73. doi:10.1080/17474230802048193 CrossRefGoogle Scholar
  51. Evans TP, Kelley H (2004) Multi-scale analysis of a household level agent-based model of landcover change. J Environ Manage 72:57–72. doi:10.1016/j.jenvman.2004.02.008 CrossRefGoogle Scholar
  52. Fasbender D, Radoux J, Bogaert P (2008) Bayesian data fusion for adaptable image pansharpening. Geosci Remote Sens IEEE Transact on 46:1847–1857. doi:10.1109/TGRS.2008.917131 CrossRefGoogle Scholar
  53. Fischer MM, Getis A (2009) Handbook of applied spatial analysis: software tools, methods and applications, 1st edn. Springer, BerlinGoogle Scholar
  54. Folke C (2006) Resilience: the emergence of a perspective for social-ecological systems analyses. Global Environ Change 16:253–267. doi:10.1016/j.gloenvcha.2006.04.002 CrossRefGoogle Scholar
  55. Fotheringham AS, Rogerson PA (2009) The SAGE handbook of spatial analysis. Sage Publications LtdGoogle Scholar
  56. Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: the analysis of spatially varying relationships. Wiley, New YorkGoogle Scholar
  57. Fox J, Rindfuss RR, Walsh SJ (2002) People and the environment: approaches for linking household and community surveys to remote sensing and GIS. Kluwer Academic, NorwellGoogle Scholar
  58. French C (2010) People, societies, and landscapes. Science 328:443–444. doi:10.1126/science.1186019 CrossRefGoogle Scholar
  59. Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeGoogle Scholar
  60. Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd ed. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  61. Getis A (2009) Spatial autocorrelation. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications, 1st edn. Springer, Berlin, pp 255–278Google Scholar
  62. Ghaffarzadegan N, Lyneis J, Richardson GP (2011) How small system dynamics models can help the public policy process. Syst Dyn Rev 27:22–44. doi:10.1002/sdr.442 Google Scholar
  63. Ghimire DJ, Axinn WG (2010) Community context, land use, and first birth. Rural Sociol 75:478–513. doi:10.1111/j.1549-0831.2010.00019.x CrossRefGoogle Scholar
  64. Ghimire DJ, Hoelter LF (2007) Land use and first birth timing in an agricultural setting. Popul Environ 28:289–320CrossRefGoogle Scholar
  65. Girard LF, Toro P (2007) Integrated spatial assessment: a multicriteria approach to sustainable development of cultural and environmental heritage in San Marco dei Cavoti, Italy. CEJOR 15:281–299. doi:10.1007/s10100-007-0031-1 CrossRefGoogle Scholar
  66. Goldstein H (1999) Multilevel statistical models. Arnold, LondonGoogle Scholar
  67. Goodchild MF (2005) GIS and modeling overview. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI, Redlands, pp 1–18Google Scholar
  68. Grimm V (1999) Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future? Ecol Model 115:129–148CrossRefGoogle Scholar
  69. Grimm V, Railsback SF (2012) Designing, formulating, and communicating agent-based models. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Dordrecht, pp 361–377Google Scholar
  70. Grimm V, Revilla E, Berger U et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. doi:10.1126/science.1116681 CrossRefGoogle Scholar
  71. Grimm V, Berger U, DeAngelis DL et al (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768. doi:10.1016/j.ecolmodel.2010.08.019 CrossRefGoogle Scholar
  72. Guzy MR, Smith CL, Bolte JP et al (2008) Policy research using agent-based modeling to assess future impacts of urban expansion into farmlands and forests. Ecol Soc 13:37Google Scholar
  73. Hägerstrand T (1966) Aspects of the spatial structure of social communication and the diffusion of information. Pap Reg Sci 16:27–42CrossRefGoogle Scholar
  74. Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, CambridgeGoogle Scholar
  75. Harden CP Human impacts on landscapes and landscape impacts on humans: an overview. Environ Manag (this volume)Google Scholar
  76. Harrell FE (2001) Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. Springer, New YorkCrossRefGoogle Scholar
  77. Harvey D (1990) Between space and time: reflections on the geographical imagination. Ann Assoc Am Geogr 80:418–434. doi:10.1111/j.1467-8306.1990.tb00305.x CrossRefGoogle Scholar
  78. Heckbert S, Baynes T, Reeson A (2010) Agent-based modeling in ecological economics. Ecol Econ Rev 1185:39–53Google Scholar
  79. Henry S, Schoumaker B, Beauchemin C (2004) The impact of rainfall on the first out-migration: a multi-level event-history analysis in Burkina Faso. Popul Environ 25:423–460CrossRefGoogle Scholar
  80. Hobbs NT, Hilborn R (2006) Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. Ecol Appl 16:5–19. doi:10.1890/04-0645 CrossRefGoogle Scholar
  81. Hosmer DW, Lemeshow S, May S (2008) Applied survival analysis: regression modeling of time to event data, 2nd ed. Wiley-Interscience, New YorkGoogle Scholar
  82. Howden SM, Soussana J-F, Tubiello FN et al (2007) Adapting agriculture to climate change. Proc Natl Acad Sci 104:19691–19696. doi:10.1073/pnas.0701890104 CrossRefGoogle Scholar
  83. Hulse D, Branscomb A, Enright C, Bolte J (2008) Anticipating floodplain trajectories: a comparison of two alternative futures approaches. Landsc Ecol 24:1067–1090. doi:10.1007/s10980-008-9255-2 CrossRefGoogle Scholar
  84. IPCC (2007) Summary for policymakers. In: Parry ML, Canziani OF, Palutikof JP, et al. (eds) Climate Change 2007: impacts, adaptation and vulnerability. contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 7–22Google Scholar
  85. Irwin EG, Bockstael NE (2002) Interacting agents, spatial externalities and the evolution of residential land use patterns. J Econ Geogr 2:31–54. doi:10.1093/jeg/2.1.31 CrossRefGoogle Scholar
  86. Ison R, Grant A, Bawden R (2010) Scenario praxis for systemic and adaptive governance: a critical review. VCCCAR scenarios for climate adaptation. Critical perspectives workshop, Melbourne, 11th Nov 2010Google Scholar
  87. Janssen MA, Rollins N (2011) Predicting behavior in new behavioral experiments: outcomes of a modeling competition. JASSS 15:5CrossRefGoogle Scholar
  88. Janssen MA, Alessa LN, Barton M et al (2008) Towards a community framework for agent-based modelling. J Artif Soc Social Simul 11:6Google Scholar
  89. Johnson KA, Dana G, Jordan NR et al (2012) Using participatory scenarios to stimulate social learning for collaborative sustainable development. Ecol Soc. doi:10.5751/ES-04780-170209 Google Scholar
  90. Jones K (1991) Specifying and estimating multi-level models for geographical research. Transact Inst British Geogr 16:148–159CrossRefGoogle Scholar
  91. Kirchner JW, Finkel RC, Riebe CS et al (2001) Mountain erosion over 10 yr, 10 ky, and 10 my time scales. Geology 29:591CrossRefGoogle Scholar
  92. Klein JP, Moeschberger ML (2010) Survival analysis: techniques for censored and truncated data. Springer, New YorkGoogle Scholar
  93. Kwan M, Lee J (2004) Geovisualization of human activity patterns using 3D GIS: A time-geographic approach. In: Goodchild MF, Janelle DG (eds) Spatially integrated social science. Oxford University Press, New York, pp 48–66Google Scholar
  94. Lach D Challenges for linking qualitative and quantitative data and methods for human–landscape systems. Environ Manag (this volume)Google Scholar
  95. Lambin EF, Turner BL, Geist HJ et al (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11:261–269. doi:10.1016/S0959-3780(01)00007-3 CrossRefGoogle Scholar
  96. Larivière B, Van den Poel D (2004) Investigating the role of product features in preventing customer churn, by using survival analysis and choice modeling: the case of financial services. Expert Syst Appl 27:277–285. doi:10.1016/j.eswa.2004.02.002 CrossRefGoogle Scholar
  97. Latour B (1996) On actor-network theory: a few clarifications. Soziale welt 47(4):7369–381Google Scholar
  98. Lee BA, Reardon SF, Firebaugh G et al (2008) Beyond the census tract: patterns and determinants of racial segregation at multiple geographic scales. Am Sociol Rev 73:766CrossRefGoogle Scholar
  99. Link WA, Cam E, Nichols JD, Cooch EG (2002) Of bugs and birds: Markov chain Monte Carlo for hierarchical modeling in wildlife research. J Wildl Manag 66:277–291. doi:10.2307/3803160 CrossRefGoogle Scholar
  100. Liu J, Linderman MA, Ouyang Z et al (2001) Ecological degradation in protected areas: the case of Wolong Nature Reserve for giant pandas. Science 292:98–101CrossRefGoogle Scholar
  101. Liu J, Dietz T, Carpenter SR et al (2007a) Complexity of coupled human and natural systems. Science 317:1513–1516. doi:10.1126/science.1144004 CrossRefGoogle Scholar
  102. Liu J, Dietz T, Carpenter SR et al (2007b) Coupled human and natural systems. J Human Environ 36:639–649. doi:10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2Google Scholar
  103. López-Carr D, Davis J, Jankowska MM et al (2012) Space versus place in complex human–natural systems: spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol Model 229:64–75. doi:10.1016/j.ecolmodel.2011.08.020 CrossRefGoogle Scholar
  104. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmospheric Sci 20:130–141CrossRefGoogle Scholar
  105. Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS-a Bayesian modelling framework: concepts, structure, and extensibility. Stat comput 10:325–337CrossRefGoogle Scholar
  106. Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067. doi:10.1002/sim.3680 CrossRefGoogle Scholar
  107. Lytinen, S. L., Railsback SF (2012) The evolution of agent-based simulation platforms: a review of NetLogo 5.0 and Relogo. Proceedings of the Fourth International Symposium on Agent-Based Modeling and SimulationGoogle Scholar
  108. Maguire DJ, Batty M, Goodchild MF (2005) GIS, spatial analysis, and modeling. ESRI, RedlandsGoogle Scholar
  109. Malanson GP (1999) Considering complexity. Ann Assoc Am Geogr 89:746–753CrossRefGoogle Scholar
  110. Manson SM (2001) Simplifying complexity: a review of complexity theory. Geoforum 32:405–414CrossRefGoogle Scholar
  111. Manson SM, Sun S, Bonsal D (2012) Agent-based modeling and complexity. In: Heppenstall AJ, Crooks AT, See LM, Batty M (eds) Agent-based models of geographical systems. Springer, Dordrecht, pp 125–139CrossRefGoogle Scholar
  112. Massey DS, Axinn WG, Ghimire DJ (2010) Environmental change and out-migration: evidence from Nepal. Popul Environ. doi:10.1007/s11111-010-0119-8 Google Scholar
  113. McNamara DE, Werner BT (2008) Coupled barrier island–resort model: 1. Emergent instabilities induced by strong human–landscape interactions. J Geophys Res 113:10. doi:10.1029/2007JF000840
  114. McPherson JW (2010) Reliability physics and engineering: time-to-failure modeling. Springer, New YorkGoogle Scholar
  115. Mohammad-Djafari A (2003) A Bayesian approach for data and image fusion. AIP Conf Proc 659:386–408. doi:10.1063/1.1570554 CrossRefGoogle Scholar
  116. Mörtberg UM, Balfors B, Knol WC (2007) Landscape ecological assessment: a tool for integrating biodiversity issues in strategic environmental assessment and planning. J Environ Manage 82:457–470. doi:10.1016/j.jenvman.2006.01.005 CrossRefGoogle Scholar
  117. Naivinit W, Le Page C, Trébuil G, Gajaseni N (2010) Participatory agent-based modeling and simulation of rice production and labor migrations in Northeast Thailand. Environ Model Softw 25:1345–1358. doi:10.1016/j.envsoft.2010.01.012 CrossRefGoogle Scholar
  118. NCVST (2009) Vulnerability through the eyes of the vulnerable: climate change induced uncertainties and Nepal’s development predicaments. Institute for Social and Environmental Transition-Nepal (ISET-N, Kathmandu) and Institute for Social and Environmental Transition (ISET, Boulder, Colorado), KathmanduGoogle Scholar
  119. Nordhaus WD (2009) Alternative policies and sea-level rise in the RICE-2009 model. SSRN eLibraryGoogle Scholar
  120. Nordhaus WD (2011) Estimates of the social cost of carbon: background and results from the RICE-2011 model. National Bureau of Economic Research Working Paper Series No. 17540:Google Scholar
  121. Nordhaus WD, Boyer J (1999) Roll the DICE again: Economic models of global warming. MIT Press, CambridgeGoogle Scholar
  122. North MJ, Howe TR, Collier, N.T, Vos JR (2007) A declarative model assembly infrastructure for verification and validation. Advancing social simulation: The First World CongressGoogle Scholar
  123. Oakes D (1983) Survival analysis. Eur J Oper Res 12:3–14. doi:10.1016/0377-2217(83)90177-7 CrossRefGoogle Scholar
  124. Olson JM, Alagarswamy G, Andresen JA et al (2008) Integrating diverse methods to understand climate-land interactions in East Africa. Geoforum 39:898–911CrossRefGoogle Scholar
  125. Olson R, Sriver R, Goes M, et al. (2012) A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model. J Geophys Res 117:11. doi:10.1029/2011JD016620 Google Scholar
  126. Pak MV, Brieva DC (2010) Designing and implementing a Role-Playing Game: a tool to explain factors, decision making and landscape transformation. Environ Model Softw 25:1322–1333. doi:10.1016/j.envsoft.2010.03.015 CrossRefGoogle Scholar
  127. Pan WKY, Bilsborrow RE (2005) The use of a multilevel statistical model to analyze factors influencing land use: a study of the Ecuadorian Amazon. Global Planet Change 47:232–252. doi:10.1016/j.gloplacha.2004.10.014 CrossRefGoogle Scholar
  128. Parker DC, Manson SM, Janssen MA et al (2003) Multi-agent systems for the simulation of land-use and land-cover change: a review. Ann Assoc Am Geogr 93:314–337CrossRefGoogle Scholar
  129. Peng C, Guiot J, Wu H et al (2011) Integrating models with data in ecology and palaeoecology: ADVANCES towards a model–data fusion approach. Ecol Lett 14:522–536. doi:10.1111/j.1461-0248.2011.01603.x CrossRefGoogle Scholar
  130. Phua M-H, Minowa M (2005) A GIS-based multi-criteria decision making approach to forest conservation planning at a landscape scale: a case study in the Kinabalu Area, Sabah, Malaysia. Landsc Urban Plan 71:207–222. doi:10.1016/j.landurbplan.2004.03.004 CrossRefGoogle Scholar
  131. Portney PR, Weyant JP (1999) Discounting and intergenerational equity. Resources for the Future, WashingtonGoogle Scholar
  132. Reardon SF, Brennan RT, Buka SL (2002) Estimating multi-level discrete-time hazard models using cross-sectional data: neighborhood effects on the onset of adolescent cigarette use. Multivar Behav Res 37:297–330. doi:10.1207/S15327906MBR3703_1 CrossRefGoogle Scholar
  133. Rey SJ, Janikas MV (2006) STARS: space–time analysis of regional systems. Geogr Anal 38:67–86. doi:10.1111/j.0016-7363.2005.00675.x CrossRefGoogle Scholar
  134. Rey S, Murray A, Anselin L (2011) Visualizing regional income distribution dynamics. Lett Spat Resour Sci 4:81–90CrossRefGoogle Scholar
  135. Ruankaew N, Le Page C, Dumrongrojwattana P et al (2010) Companion modelling for integrated renewable resource management: A new collaborative approach to create common values for sustainable development. Int J Sustain Dev World Ecol 17:15–23. doi:10.1080/13504500903481474 CrossRefGoogle Scholar
  136. Salter J, Robinson J, Wiek A (2010) Participatory methods of integrated assessment - a review. Wiley Interdiscip Rev Climate Change 1:697–717. doi:10.1002/wcc.73 CrossRefGoogle Scholar
  137. Samarasundera E (2007) Towards a dynamic ecosystem model for the Neolithic upper Allen valley. In: French C, Lewis H, Allen MJ et al (eds) Prehistoric landscape development and human impact in the upper Allen valley, Cranborne Chase, Dorset, First Edition. McDonald Institute for Archaeological Research, Cambridge, pp 197–207Google Scholar
  138. Sang S, O’Kelly M, Kwan M-P (2010) Examining commuting patterns: results from a journey-to-work model disaggregated by gender and occupation. Urban Stud. doi:10.1177/0042098010368576 Google Scholar
  139. Schmolke A, Thorbek P, DeAngelis DL, Grimm V (2010) Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol Evol 25:479–486. doi:10.1016/j.tree.2010.05.001 CrossRefGoogle Scholar
  140. Selvin S (2008) Survival analysis for epidemiologic and medical research. Cambridge University Press, CambridgeGoogle Scholar
  141. Serra P, Pons X, Saurí D (2008) Land-cover and land-use change in a Mediterranean landscape: a spatial analysis of driving forces integrating biophysical and human factors. Appl Geogr 28:189–209. doi:10.1016/j.apgeog.2008.02.001 CrossRefGoogle Scholar
  142. Shaw S-L, Yu H, Bombom LS (2008) A space-time GIS approach to exploring large individual-based spatiotemporal datasets. Transact GIS 12:425–441. doi:10.1111/j.1467-9671.2008.01114.x CrossRefGoogle Scholar
  143. Simon C, Etienne M (2010) A companion modelling approach applied to forest management planning. Environ Model Softw 25:1371–1384. doi:10.1016/j.envsoft.2009.09.004 CrossRefGoogle Scholar
  144. Solberg AHS, Jain AK, Taxt T (1994) Multisource classification of remotely sensed data: Fusion of Landsat TM and SAR images. Geosci Remote Sens IEEE Transact on 32:768–778. doi:10.1109/36.298006 CrossRefGoogle Scholar
  145. Stepanova M, Thomas L (2002) Survival analysis methods for personal loan data. Oper Res 50:277–289. doi:10.1287/opre.50.2.277.426 CrossRefGoogle Scholar
  146. Subramanian SV (2010) Multilevel modeling. handbook of applied spatial analysis. Springer, Berlin, pp 507–525CrossRefGoogle Scholar
  147. Tews J, Esther A, Milton SJ, Jeltsch F (2006) Linking a population model with an ecosystem model: assessing the impact of land use and climate change on savanna shrub cover dynamics. Ecol Model 195:219–228CrossRefGoogle Scholar
  148. Thomas A, O’Hara B, Ligges U, Sturtz S (2006) Making BUGS open. R News 6:12–17Google Scholar
  149. Thrift N (2001) Timespace: geographies of temporality. Routledge, LondonGoogle Scholar
  150. Torrens PM (2010) Agent-based models and the spatial sciences. Geogr Compass 4:428–448. doi:10.1111/j.1749-8198.2009.00311.x CrossRefGoogle Scholar
  151. Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19:385–412. doi:10.1080/13658810512331325139 CrossRefGoogle Scholar
  152. Turner BL, Kasperson RE, Matson PA et al (2003) A framework for vulnerability analysis in sustainability science. Proc Natl Acad Sci USA 100:8074CrossRefGoogle Scholar
  153. Urban NM, Keller K (2010) Probabilistic hindcasts and projections of the coupled climate, carbon cycle and Atlantic meridional overturning circulation system: a Bayesian fusion of century-scale observations with a simple model. Tellus A 62(5):737–750Google Scholar
  154. Van den Belt M, Kenyan JR, Krueger E et al (2010) Public sector administration of ecological economics systems using mediated modeling. Ann N Y Acad Sci 1185:196–210. doi:10.1111/j.1749-6632.2009.05164.x CrossRefGoogle Scholar
  155. Vance C, Geoghegan J (2002) Temporal and spatial modelling of tropical deforestation: a survival analysis linking satellite and household survey data. Agric Econ 27:317–332. doi:10.1111/j.1574-0862.2002.tb00123.x CrossRefGoogle Scholar
  156. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494 CrossRefGoogle Scholar
  157. Wandersee SM, An L, López-Carr D, Yang Y (2012) Perception and decisions in modeling coupled human and natural systems: a case study from Fanjingshan National Nature Reserve, China. Ecol Model 229:37–49. doi:10.1016/j.ecolmodel.2011.08.004 CrossRefGoogle Scholar
  158. Weeks JR, Getis A, Hill AG et al (2010) Neighborhoods and fertility in Accra, Ghana: an AMOEBA-based approach. Ann Assoc Am Geogr 100:558–578CrossRefGoogle Scholar
  159. Werner BT, McNamara DE (2007) Dynamics of coupled human–landscape systems. Geomorphology 91:393–407. doi:10.1016/j.geomorph.2007.04.020 CrossRefGoogle Scholar
  160. Wilensky U (1999) NetLogo. Northwestern University, EvanstonGoogle Scholar
  161. Wolfram S (2003) A new kind of science. Appl Mech Rev 56:B18–B19. doi:10.1115/1.1553433 CrossRefGoogle Scholar
  162. Wolman MG, Miller JP (1960) Magnitude and frequency of forces in geomorphic processes. J Geol 68:54–74CrossRefGoogle Scholar
  163. Wu L, Ye X, Webb D (in press) Space-time analysis of auto burglary patterns in a fast-growing small city. Int J Appl Geospatial ResGoogle Scholar
  164. Xie M, Lai CD (1996) Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab Eng Syst Safety 52:87–93. doi:10.1016/0951-8320(95)00149-2 CrossRefGoogle Scholar
  165. Yabiku ST (2006) Land use and marriage timing in Nepal. Popul Environ 27:445–461CrossRefGoogle Scholar
  166. Ye X, Carroll MC (2011) Exploratory space-time analysis of local economic development. Appl Geogr 31:1049–1058. doi:10.1016/j.apgeog.2011.02.003 CrossRefGoogle Scholar
  167. Yuan M (2007) Adding time. In: Wilson J, Fotheringham AS (eds) The handbook of geographic information science, 1st ed. Wiley-Blackwell, Hoboken, pp 169–184Google Scholar
  168. Zellner ML (2008) Embracing complexity and uncertainty: the potential of agent-based modeling for environmental planning and policy. Plan Theory Pract 9:437–457. doi:10.1080/14649350802481470 CrossRefGoogle Scholar
  169. Zhang J (2010) Multi-source remote sensing data fusion: status and trends. Int J Image Data Fusion 1:5–24. doi:10.1080/19479830903561035 CrossRefGoogle Scholar
  170. Zvoleff A, An L (in press) Modeling human–environment interactions and their ecological implicationsGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of GeographySan Diego State University/University of CaliforniaSan DiegoUSA
  2. 2.Department of GeographySan Diego State UniversitySan DiegoUSA

Personalised recommendations