Advertisement

Environmental Management

, 48:885 | Cite as

Addressing the Impact of Atmospheric Nitrogen Deposition on Western European Grasslands

  • C. J. StevensEmail author
  • D. J. G. Gowing
  • K. A. Wotherspoon
  • D. Alard
  • P. A. Aarrestad
  • A. Bleeker
  • R. Bobbink
  • M. Diekmann
  • N. B. Dise
  • C. Duprè
  • E. Dorland
  • C. Gaudnik
  • S. Rotthier
  • M. B. Soons
  • E. Corcket
Article

Abstract

There is a growing evidence base demonstrating that atmospheric nitrogen deposition presents a threat to biodiversity and ecosystem function in acid grasslands in Western Europe. Here, we report the findings of a workshop held for European policy makers to assess the perceived importance of reactive nitrogen deposition for grassland conservation, identify areas for policy development in Europe and assess the potential for managing and mitigating the impacts of nitrogen deposition. The importance of nitrogen as a pollutant is already recognized in European legislation, but there is little emphasis in policy on the evaluation of changes in biodiversity due to nitrogen. We assess the potential value of using typical species, as defined in the European Union Habitats Directive, for determining the impact of nitrogen deposition on acid grasslands. Although some species could potentially be used as indicators of nitrogen deposition, many of the typical species do not respond strongly to nitrogen deposition and are unlikely to be useful for identifying impact on an individual site. We also discuss potential mitigation measures and novel ways in which emissions from agriculture could be reduced.

Keywords

Acid grasslands Biodiversity Convention on long-range transboundary air pollution (CLRTAP) Nitrogen deposition Species-rich Nardus grassland 

Notes

Acknowledgments

This project was funded by the European Science Foundation through the EURODIVERSITY-programme, and national funds were provided by DfG (Germany), NERC (United Kingdom), NWO (The Netherlands) and INRA, ADEME and Aquitaine Region (France). We are grateful to workshop participants for their useful contributions.

References

  1. Achermann B, Bobbink R (2003) Empirical critical loads for nitrogen. In: Proceedings of the expert workshop, Berne, 11–13 November 2002. Swiss Department for the Environment, Forests and Landscape, BerneGoogle Scholar
  2. Asman WAH, van Jaarsveld JA (2002) A variable-resolution transport model applied for NHx in Europe. Atmospheric Environment 26A:445–464Google Scholar
  3. Blake L, Goulding KWT, Mott CJB, Johnston AE (1999) Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamstead Experimental Station, UK. European Journal of Soil Science 50:401–412CrossRefGoogle Scholar
  4. Bleeker A, Hicks WK, Dentener F, Galloway J, Erisman JW (2011) N deposition as a threat to the world’s protected areas under the convention on biological diversity. Environmental Pollution 159:2280–2288CrossRefGoogle Scholar
  5. Bobbink R, Hornung M, Roelofs JGM (1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86:717–738CrossRefGoogle Scholar
  6. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20:30–59CrossRefGoogle Scholar
  7. Buisson E, Holl KD, Anderson S, Corcket E, Hayes GF, Torre F, Peteers A, Dutoit T (2006) Effect of seed source, topsoil removal, and plant neighbour removal on restoring California coastal prairies. Restoration Ecology 14:569–577CrossRefGoogle Scholar
  8. Coiffait-Gombault C, Buisson E, Dutoit T (2010) Hay transfer promotes establishment of mediterranean steppe vegetation on soil disturbed by pipeline construction. Restoration Ecology 19:214–222CrossRefGoogle Scholar
  9. Daley CA, Abbott A, Doyle PS, Nader GA, Larson S (2010) A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutrition Journal 9:1–12CrossRefGoogle Scholar
  10. De Graaf MCC, Verbeek PJM, Bobbink R, Roelofs JGM (1998) Restoration of species-rich dry heaths. The importance of appropriate soil conditions. Acta Botanica Neerlandica 47:98–111Google Scholar
  11. Dentener F, Drevet J, Lamarque JF, Bey I, Eickout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochemical Cycles 20:1–21CrossRefGoogle Scholar
  12. Dorland E, Van den Berg LJL, Van den Berg AJ, Vermeer M, Roelofs JGM, Bobbink R (2004) The effects of sod cutting and additional liming on potential net nitrification in heathland soils. Plant and Soil 265:267–277CrossRefGoogle Scholar
  13. Dorland E, Hart MAC, Vermeer ML, Bobbink R (2005a) Assessing the success of wet heath restoration by combined sod cutting and liming. Applied Vegetation Science 8:209–311CrossRefGoogle Scholar
  14. Dorland E, van den Berg LJL, Brouwer E, Roelofs JGM, Bobbink R (2005b) Catchment liming to restore degraded, acidified heathlands and moorland pools. Restoration Ecology 13:302–311CrossRefGoogle Scholar
  15. Duprè C, Stevens CJ, Ranke T, Bleeker A, Peppler-Lisbach C, Gowing DJG, Dise NB, Dorland E, Bobbink R, Diekmann M (2010) Changes in species richness and composition in European acidic grasslands over the past 70 years: the contribution of cumulative atmospheric nitrogen deposition. Global Change Biology 16:344–357CrossRefGoogle Scholar
  16. EEA (2007) Halting the loss of biodiversity by 2010: proposal for a first set of indicators to monitor progress in Europe. European Environment Agency, CopenhagenGoogle Scholar
  17. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen, 5th edn. Eugen Ulmer, StuttgartGoogle Scholar
  18. Engelhardt KM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411:687–689CrossRefGoogle Scholar
  19. Erisman JW, Bleeker A, Hensen A, Vermeulen A (2008) Agricultural air quality in Europe and the future perspectives. Atmospheric Environment 42:3209–3217CrossRefGoogle Scholar
  20. Eschen R, Mortimer SM, Lawson CS, Edwards AR, Brook AJ, Igual JM, Hedlund K, Schaffner U (2007) Carbon addition alters vegetation composition on ex-arable fields. Journal of Applied Ecology 44:95–104CrossRefGoogle Scholar
  21. European Commission (2006) Assessment, monitoring and reporting under Article 17 of the Habitats Directive: explanatory notes and guidelines. European CommissionGoogle Scholar
  22. Fagerli H, Aas W (2008) Trends of nitrogen in air and precipitation: model results and observations at EMEP sites in Europe, 1980–2003. Environmental Pollution 154:448–461CrossRefGoogle Scholar
  23. Falkengren-Grerup U (1995) Long-term changes in flora and vegetation in deciduous forests of southern Sweden. Ecological Bulletins 44:215–226Google Scholar
  24. Fowler D, Smith R, Muller J, Cape JN, Sutton M, Erisman JW, Fagerli H (2007) Long term trends in sulfur and nitrogen deposition in Europe and the cause of non-linearities. Water Air and Soil Pollution Focus 7:41–47CrossRefGoogle Scholar
  25. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892CrossRefGoogle Scholar
  26. Galvánek D, Janák M (2008) Management of Natura 2000 habitats. 6230 *Species-rich Nardus grasslands. European CommissionGoogle Scholar
  27. Gauger T, Anshelm F, Schuster H, Erisman JW, Vermeulen AT, Draaijers GPJ, Bleeker A, Nagel H-D (2002) Mapping of ecosystem specific long-term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and critical levels. Institut fur Navigation, University of Stuttgart, StuttgartGoogle Scholar
  28. Gidman EA, Stevens CJ, Goodacre R, Broadhurst D, Emmett B, Gwynn-Jones D (2006) Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls. Global Change Biology 12:1823–1833CrossRefGoogle Scholar
  29. Hautier Y, Niklaus PA, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638CrossRefGoogle Scholar
  30. Hejcman M, Klaudisová M, Hejcmanová P, Pavlů V, Jones M (2009) Expansion of Calamagrostis villosa in sub-alpine Nardus stricta grassland: cessation of cutting management or high nitrogen deposition? Agriculture Ecosystems and Environment 129:91–96CrossRefGoogle Scholar
  31. Hejcman M, Schellberg J, Pavlů V (2010) Long-term effects of cutting frequency and liming on soil chemical properties, biomass production and plant species composition of Lolio-Cynosuretum grassland after the cessation of fertilizer application. Applied Vegetation Science 13:257–269Google Scholar
  32. ICP Modelling and Mapping (2004) Manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. Report UBA-Texte 52/04. http://icpmapping.org/
  33. Jansen AJM, Roelofs JGM (1996) Restoration of Cirsio-Molinietum wet meadows by sod cutting. Ecological Engineering 7:279–298CrossRefGoogle Scholar
  34. Johnston AE, Goulding KWT, Poulton PR (1986) Soil acidification during more than 100 years under permanent grassland and woodland at Rothamstead. Soil Use and Management 2:3–10CrossRefGoogle Scholar
  35. Jones AT, Hayes MJ (1999) Increasing floristic diversity in grassland: the effects of management regime and provenance on species introduction. Biological Conservation 87:381–390CrossRefGoogle Scholar
  36. Krahulec F (1985) The chorologic pattern of European nardus-rich communities. Vegetatio 59:119–123CrossRefGoogle Scholar
  37. Mace G, Masundire H, Baille J (2005) Biodiversity, Millennium Ecosystem Assessment. Island Press, WashingtonGoogle Scholar
  38. Maskell LC, Smart SM, Bullock JM, Thompson K, Stevens CJ (2010) Nitrogen deposition causes widespread species loss in British habitats. Global Change Biology 16:671–679CrossRefGoogle Scholar
  39. NEGTAP (2001) Transboundary air pollution: acidification, eutrophication and ground-level ozone in the UK. CEH, EdinburghGoogle Scholar
  40. Netherlands Environmental Assessment Agency (2005) Environmental data compendium: nitrogen deposition in the Netherlands, 2001. http://www.mnp.nl/mnc/i-en-0189.html
  41. Nilsson J, Grennfelt PE (1988) Critical loads for sulphur and nitrogen. UNECE/Nordic Council of Ministers, CopenhagenGoogle Scholar
  42. Olff H, Bakker JP (1991) Long-term dynamics of standing crop and species composition after the cessation of fertiliser application to mown grassland. Journal of Applied Ecology 28:1040–1052CrossRefGoogle Scholar
  43. Pieterse G, Bleeker A, Vermeulen AT, Wu Y, Erisman JW (2007) High resolution modelling of atmosphere-canopy exchange of acidifying and eutrophying components and carbon dioxide for European forests. Tellus 59B:412–424Google Scholar
  44. Poschlod P, Biewer H (2005) Diaspore and gap availability are limiting species richness in wet meadows. Folia Geobotanica 40:13–34CrossRefGoogle Scholar
  45. Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks T, Burke MJW, Peel S (2002) Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. Journal of Applied Ecology 39:294–309CrossRefGoogle Scholar
  46. Roelofs JGM, Bobbink R, Brouwer E, De Graaf MCC (1996) Restoration ecology of aquatic and terrestrial vegetation on non-calcareous sandy soils in The Netherlands. Acta Botanica Neerlandica 45:517–541Google Scholar
  47. Rosegrant MW, Leach N, Gerpacio RV (1999) Alternative futures for world cereal and meat consumption. Proceedings of the Nutrition Society 58:219–234CrossRefGoogle Scholar
  48. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  49. Schwickerath M (1944) Das Hohe Venn und seine Randgebiete. Pflanzensoziologie 6:1–278Google Scholar
  50. Sikor T (2003) The commons in transition: agrarian and environmental change in Central and Eastern Europe. Environmental Management 34:270–280CrossRefGoogle Scholar
  51. Silvertown J, Dodd ME, McConway K, Potts J, Crawley M (1994) Rainfall, biomass variation, and community composition in the Park Grass experiment. Ecology 75:2430–2437CrossRefGoogle Scholar
  52. Smith RI, Fowler D, Sutton MA, Flechard C, Coyle M (2000) Regional estimation of pollutant gas dry deposition in the UK: model description, sensitivity analyses and outputs. Atmospheric Environment 34:3757–3777CrossRefGoogle Scholar
  53. Soons MB, Messelink JH, Jongejans E, Heil GW (2005) Habitat fragmentation reduces grassland connectivity for both short-distance and long-distance wind-dispersed forbs. Journal of Ecology 93:1214–1225CrossRefGoogle Scholar
  54. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879CrossRefGoogle Scholar
  55. Stevens CJ, Maskell LC, Smart SM, Caporn SJM, Dise NB, Gowing DJ (2009) Identifying indicators of atmospheric nitrogen deposition impacts in acid grasslands. Biological Conservation 142:2069–2075CrossRefGoogle Scholar
  56. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2010a) Nitrogen deposition threatens species richness of grasslands across Europe. Environmental Pollution 158:2940–2945CrossRefGoogle Scholar
  57. Stevens CJ, Thompson K, Grime JP, Long CJ, Gowing DJG (2010b) Contribution of acidification and eutrophication to declines in species richness of calcifuge grasslands along a gradient of atmospheric nitrogen deposition. Functional Ecology 24:478–484CrossRefGoogle Scholar
  58. Stevens CJ, Dupre C, Gaudnik C, Dorland E, Dise NB, Gowing DJ, Bleeker A, Alard D, Bobbink R, Fowler D, Corcket E, Vandvik V, Mountford JO, Aarrestad PA, Muller S, Diekmann M (2011a) Changes in species composition of European acid grasslands observed along a gradient of nitrogen deposition. Journal of Vegetation Science 22:207–215CrossRefGoogle Scholar
  59. Stevens CJ, Duprè C, Dorland E, Gaudnik C, Gowing DJG, Bleeker A, Diekmann M, Alard D, Bobbink R, Fowler D, Corcket E, Mountford JO, Vandvik V, Aarrestad PA, Muller S, Dise NB (2011b) The impact of nitrogen deposition on acid grasslands in the Atlantic region of Europe. Environmental Pollution 159:2243–2250CrossRefGoogle Scholar
  60. Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P, van Grinsven H, Grizzetti B (2011) The European nitrogen assessment. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  61. ter Braak CFJ, Smilauer P (2002) CANOCO 4.5, 4.5 ed. Biometris, WargeningenGoogle Scholar
  62. Tilman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proceedings of the National Academy of Sciences of the United States of America 96:5995–6000CrossRefGoogle Scholar
  63. Török K, Szili-Kovacs T, Halassy M, Toth T, Hayek Z, Paschke MW, Wardell LJ (2000) Immobilization of soil nitrogen as a possible method for the restoration of sandy grassland. Applied Vegetation Science 3:7–14CrossRefGoogle Scholar
  64. Tyler G, Olsson T (2001) Concentrations of 60 elements in the soil solution as related to soil acidity. European Journal of Soil Science 52:151–165CrossRefGoogle Scholar
  65. van den Berg LJL, Dorland E, Vergeer P, Hart MAC, Bobbink R, Roelofs JGM (2003a) Decline of acid-sensitive plant species in heathland can be attributed to ammonium toxicity in combination with low pH. New Phytologist 166:551–564CrossRefGoogle Scholar
  66. van den Berg LJL, Vergeer P, Roelofs JGM (2003b) Heathland restoration in The Netherlands: effects of turf cutting depth on germination of Arnica montana. Applied Vegetation Science 6:117–124CrossRefGoogle Scholar
  67. Van Jaarsveld JA (1995) Modelling the long-term atmospheric behaviour of pollutants on various spatial scales. University of Utrecht, UtrechtGoogle Scholar
  68. Van Jaarsveld JA (2004) The operation priority substances model. National Institute for Public Health and the Environment (RIVM), BilthovenGoogle Scholar
  69. Walker KJ, Stevens PA, Stevens DP, Mountford JO, Manchester SJ, Pywell RF (2003) The restoration and re-creation of species rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation 119:1–18CrossRefGoogle Scholar
  70. Wilson EJ, Wells TCE, Sparks TH (1995) Are calcareous grasslands in the UK under threat from nitrogen deposition?—an experimental determination of a critical load. Journal of Ecology 83:823–832CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • C. J. Stevens
    • 1
    • 2
    Email author
  • D. J. G. Gowing
    • 1
  • K. A. Wotherspoon
    • 1
  • D. Alard
    • 3
  • P. A. Aarrestad
    • 4
  • A. Bleeker
    • 5
  • R. Bobbink
    • 6
  • M. Diekmann
    • 7
  • N. B. Dise
    • 8
  • C. Duprè
    • 7
  • E. Dorland
    • 9
    • 10
  • C. Gaudnik
    • 3
  • S. Rotthier
    • 9
  • M. B. Soons
    • 9
  • E. Corcket
    • 3
  1. 1.Department of Life SciencesThe Open UniversityMilton KeynesUK
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.University of Bordeaux, UMR INRA 1202 Biodiversity, Genes and CommunitiesTalenceFrance
  4. 4.Norwegian Institute for Nature ResearchTrondheimNorway
  5. 5.Department of Air Quality & Climate ChangeEnergy Research Centre of the NetherlandsPettenThe Netherlands
  6. 6.B-WARE Research CentreRadboud UniversityNijmegenThe Netherlands
  7. 7.Institute of Ecology, FB 2University of BremenBremenGermany
  8. 8.Department of Environmental and Geographical ScienceManchester Metropolitan UniversityManchesterUK
  9. 9.Ecology and Biodiversity GroupUtrecht UniversityUtrechtThe Netherlands
  10. 10.KWR Watercycle Research InstituteNieuwegeinThe Netherlands

Personalised recommendations