Environmental Management

, Volume 43, Issue 5, pp 876–887 | Cite as

Analysis of Postfire Vegetation Dynamics of Mediterranean Shrub Species Based on Terrestrial and NDVI Data

  • Rocío Hernández-ClementeEmail author
  • R. M. Navarro Cerrillo
  • J. E. Hernández-Bermejo
  • S. Escuin Royo
  • N. A. Kasimis


The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.


Fire ecology Diversity Succession Remote sensing NDVI Mediterranean communities 



The authors wish to acknowledge assistance from Francisco Pérez-Raya and Joaquín Molero (University of Granada), José María Irurita, and José Manuel Moreira. This work has been supported by the Environment Department of the Andalusian Regional Government.


  1. Baeza MJ (2001) Aspectos ecológicos y técnicas de control de combustible (roza y quema controlada) en matorrales con alto riesgo de incendio dominados por Ulex parviflorus Pourr. Ph.D. thesis, University of Alicante, SpainGoogle Scholar
  2. Bonham CD (1989) Measurements for terrestrial vegetation. Wiley, New YorkGoogle Scholar
  3. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment 62:241–252CrossRefGoogle Scholar
  4. Caselles V, Lopez Garcia MJ (1989) An alternative simple approach to estimate atmospheric correction in multitemporal studies. International Journal of Remote Sensing 10:1127–1134CrossRefGoogle Scholar
  5. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Inst. Publ. 242, Washington, DCGoogle Scholar
  6. Díaz-Delgado R, Pons X (2001) Spatial patterns of forest fires in Catalonia (Spain) along the period 1975–1995. Analysis of vegetation recovery after fire. Forest Ecology and Management 147:67–74CrossRefGoogle Scholar
  7. Escuin S, Navarro-Cerrillo RM, Fernandez P (2006) Assessment of post fire vegetation cover using spectral mixture analysis. Application and comparison of different endmember characterization methods. Investigación Agraria: Sistemas y Recursos Forestales 15:107–119Google Scholar
  8. Hall FG, Botkin DB, Strebel DE, Woods KD, Gotees SJ (1991) Large-scale patterns of forest succession as determined by remote sensing. Ecology 72:628–664CrossRefGoogle Scholar
  9. Hanes TL (1971) Succession after fire in the chaparral of southern California. Ecological Monographs 41:27–52CrossRefGoogle Scholar
  10. Hernández-Clemente R, Navarro Cerrillo RM, Hernández-Bermejo JE, Escuin Royo S (2007) Regeneración y cambios en diversidad en grandes incendios a partir de imágenes satelite Landsat TM y ETM+. Cuadernos de investigacion geografica 23:14–22Google Scholar
  11. Kuhnholtz-Lordat G (1938) La terre incendiée. Maison Carrée, Nmes, FranceGoogle Scholar
  12. Lloret F, Pausas JG, Vilá M (2003) Vegetation response to different fire regimes in Garraf (Catalonia, Spain): field observations and modelling predictions. Plant Ecology 167:223–235CrossRefGoogle Scholar
  13. Marchetti M, Ricotta C, Volpe F (1995) A qualitative approach to the mapping of post-fire regrowth in Mediterranean vegetation with Landsat TM data. International Journal of Remote Sensing 16:2487–2494CrossRefGoogle Scholar
  14. Mateo Sanz G, Mansanet J (1982) Sobre la vegetación de la Alianza Cistion laurifolii en los alrededores de Valencia. Lazaroa 4:105–117Google Scholar
  15. Morey M, Trabaud L (1988) Primeros resultados sobre la dinamica de la vegetación tras incendio en Mallorca. Studia Oecologica 5:137–159Google Scholar
  16. Naveh Z (1975) The evolutionary significance of fire in the Mediterranean region. Vegetatio 29:199–208CrossRefGoogle Scholar
  17. Pausas JG (1999) Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: a simulation approach. Journal of Vegetation Science 10:717–722CrossRefGoogle Scholar
  18. Pausas JG (2004) La recurrencia de incendios en el monte mediterráneo. In: Vallejo VR, Alloza JA (eds) Avances en el estudio de la gestión del monte mediterráneo. CEAM, Valencia, pp 47–64Google Scholar
  19. Piussi P (1992) Environmental changes in forest. Examples from the south of Europe. In: Taller A, Mathy P, Jeffers JNR (eds) Response of forest ecosystems to environment changes. Elsevier Applied Science, London, pp 298–309Google Scholar
  20. Riaño D, Chuvieco E, Ustin S, Zomer R, Dennison P, Roberts D, Salas J (2002) Assessment of vegetation regeneration postfire through multitemporal analysis of AVIRIS images in the Santa Monica mountains. Remote Sensing of Environment 79:60–71CrossRefGoogle Scholar
  21. Rivas-Martinez S, Asensi A, Díez-Garretas B, Molero J, Valle F (1997) Biogeographical synthesis of Andalusia (Southern Spain). Journal of Biogeography 24:915–928CrossRefGoogle Scholar
  22. Tárrega R, Calabuig EL (1987) Effects of fire on structure dynamics and regeneration of Quercus pyrenaica ecosystems. Ecologia Mediterranea 13:79–86Google Scholar
  23. Tárrega R, Calbuig EL, Alonso J (1997) Space-time heterogeneity in the recovery alter experimental burning and cutting in a Cistus laurifolius shrub land. Plant Ecology 129:179–187CrossRefGoogle Scholar
  24. Telesca L, Lasaponara R (2006) Vegetational patterns in burned and unburned areas investigated by using the detrended fluctuation analysis. Physica A 368:531–535CrossRefGoogle Scholar
  25. Terradas J (2001) Ecología de la vegetación. Omega, BarcelonaGoogle Scholar
  26. Trabaud L, Lepart J (1981) Floristic changes in Quercus coccifera L. garrigue according to different fires regimes. Vegetatio 46:105–116CrossRefGoogle Scholar
  27. Viedma O, Meliá J, Segarra D, García-Haro J (1997) Modelling rates of ecosystem recovery after fires by using Landsat tm data. Remote Sensing of Environment 61:383–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Rocío Hernández-Clemente
    • 1
    Email author
  • R. M. Navarro Cerrillo
    • 1
  • J. E. Hernández-Bermejo
    • 2
  • S. Escuin Royo
    • 1
  • N. A. Kasimis
    • 1
  1. 1.Department of Forest Engineering, Faculty of Agronomy Rabanales CampusUniversity of CórdobaCordobaSpain
  2. 2.Department of Agricultural and Forest Sciences and Resources, Rabanales CampusUniversity of CórdobaCordobaSpain

Personalised recommendations