Environmental Management

, Volume 43, Issue 3, pp 436–446 | Cite as

History Matters: Relating Land-Use Change to Butterfly Species Occurrence

Article

Abstract

Western European landscapes have drastically changed since the 1950s, with agricultural intensifications and the spread of urban settlements considered the most important drivers of this land-use/land-cover change. Losses of habitat for fauna and flora have been a direct consequence of this development. In the present study, we relate butterfly occurrence to land-use/land-cover changes over five decades between 1951 and 2000. The study area covers the entire Swiss territory. The 10 explanatory variables originate from agricultural statistics and censuses. Both state as well as rate was used as explanatory variables. Species distribution data were obtained from natural history collections. We selected eight butterfly species: four species occur on wetlands and four occur on dry grasslands. We used cluster analysis to track land-use/land-cover changes and to group communes based on similar trajectories of change. Generalized linear models were applied to identify factors that were significantly correlated with the persistence or disappearance of butterfly species. Results showed that decreasing agricultural areas and densities of farms with more than 10 ha of cultivated land are significantly related with wetland species decline, and increasing densities of livestock seem to have favored disappearance of dry grassland species. Moreover, we show that species declines are not only dependent on land-use/land-cover states but also on the rates of change; that is, the higher the transformation rate from small to large farms, the higher the loss of dry grassland species. We suggest that more attention should be paid to the rates of landscape change as feasible drivers of species change and derive some management suggestions.

Keywords

Butterfly species Cluster analysis Generalized linear model Historical data analysis Natural history collection data Rates of landscape change 

Notes

Acknowledgments

This study was supported by a grant from the Swiss National Science Foundation (application No. 4048-064460) in the program “Landscapes and Habitats of the Alps” (NRP 48). We are thankful to the Swiss Federal Statistical Office for providing most recent census data. We thank Christoph Buser from the Seminar for Statistics of the Swiss Federal Institute of Technology Zurich (ETHZ) for constructive discussion on the statistical part and appreciate helpful comments of Janine Bolliger on an earlier draft of this article. We are grateful to two anonymous reviewers who provided constructive comments on the manuscript and to Thomas Edwards for linguistic corrections.

References

  1. Austin MP (1980) Searching for a model for use in vegetation analysis. Vegetatio 42:11–21CrossRefGoogle Scholar
  2. Bätzing W (2003) Die Alpen. Geschichte und Zukunft einer europäischen Kulturlandschaft, 2nd edn. Beck, MünchenGoogle Scholar
  3. Baur P, Bebi P, Gellrich M, Rutherford G (2006) WaSAlp: Waldausdehnung im Schweizer Alpenraum. Eine quantitative Analyse naturräumlicher und sozio-ökonomischer Ursachen unter besonderer Berücksichtigung des Agrarstrukturwandels. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL, BirmensdorfGoogle Scholar
  4. Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. Journal of Applied Ecology 39:673–687CrossRefGoogle Scholar
  5. Bergman KO, Kindvall O (2004) Population viability analysis of the butterfly Lopinga achine in a changing landscape in Sweden. Ecography 27:49–58CrossRefGoogle Scholar
  6. BFS (Bundesamt für Statistik) (1996) Strukturwandel und Innovation in der Landwirtschaft. Landwirtschaftliche Betriebszählung 1996. Bundesamt für Statistik, BernGoogle Scholar
  7. Brachet S, Olivieri I, Godelle B, Klein E, Frascaria-Lacoste N, Gouyon PH (1999) Dispersal and metapopulation viability in a heterogeneous landscape. Journal of Theoretical Biology 198:479–495CrossRefGoogle Scholar
  8. Burel F, Baudry J (1990) Structural dynamic of a hedgerow network landscape in Brittany France. Landscape Ecology 4:197–210CrossRefGoogle Scholar
  9. Chamberlain DE, Fuller RJ, Bunce RGH, Duckworth JC, Shrubb M (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology 37:771–788CrossRefGoogle Scholar
  10. Chevan A, Sutherland M (1991) Hierarchical partitioning. American Statistician 45:90–96CrossRefGoogle Scholar
  11. Cousins SAO, Eriksson O (2002) The influence of management history and habitat on plant species richness in a rural hemiboreal landscape, Sweden. Landscape Ecology 17:517–529CrossRefGoogle Scholar
  12. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, 582 ppGoogle Scholar
  13. Dullinger S, Dirnböck T, Greimler J, Grabherr G (2003) A resampling approach for evaluating effects of pasture abandonment on subalpine plant species diversity. Journal of Vegetation Science 14:243–252CrossRefGoogle Scholar
  14. Ebert G, Rennwald E (1993) Die Schmetterlinge Baden-Württembergs. Ulmer, Stuttgart, 552 ppGoogle Scholar
  15. Eggenberg S, Dalang T, Dipner M, Mayer C (2001) Kartierung und Bewertung der Trockenwiesen und -weiden von nationaler Bedeutung. Technischer Bericht. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern, 251 ppGoogle Scholar
  16. Ellenberg H (1996) Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ulmer, Stuttgart, 1095 ppGoogle Scholar
  17. Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41:263–274CrossRefGoogle Scholar
  18. Erhardt A (1985) Wiesen und Brachland als Lebensraum für Schmetterlinge. Eine Feldstudie im Tavetsch (GR). Birkhäuser Verlag, Basel, 154 ppGoogle Scholar
  19. Ewald KC (1978) Der Landschaftswandel: zur Veränderung schweizerischer Kulturlandschaften im 20. Jahrhundert. Eidgenössische Anstalt für das Forstliche Versuchswesen, Birmensdorf, 253 ppGoogle Scholar
  20. Fahrig L (1992) Relative importance of spatial and temporal scales in a patchy environment. Theoretical Population Biology 41:300–314CrossRefGoogle Scholar
  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38–49CrossRefGoogle Scholar
  22. Gaston KJ, Blackburn TM, Goldewijk KK (2003) Habitat conversion and global avian biodiversity loss. Proceedings of the Royal Society London Series-B Biological Sciences 270:1293–1300CrossRefGoogle Scholar
  23. Gonseth Y (1987) Verbreitungsatlas der Tagfalter der Schweiz (Lepidoptera Rhopalocera). Centre Suisse de Carthographie de la Faune, Neuchâtel, 242 ppGoogle Scholar
  24. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution 19:497–503CrossRefGoogle Scholar
  25. Guisan A, Hofer U (2003) Predicting reptile distributions at the mesoscale: relation to climate and topography. Journal of Biogeography 30:1233–1243CrossRefGoogle Scholar
  26. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models? Ecology Letters 8:993–1009CrossRefGoogle Scholar
  27. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135:147–186CrossRefGoogle Scholar
  28. Hohl M (2006) Spatial and temporal variation of grasshopper and butterfly communities in differently managed semi-natural grasslands of the Swiss Alps. Thesis No. 16625, Swiss Federal Institute of Technology Zurich (ETHZ). Zurich, 98 ppGoogle Scholar
  29. Hutchinson CF, Unruh JD, Bahre CJ (2000) Land use vs. climate as causes of vegetation change: a study in SE Arizona. Global Environmental Change 10:47–55CrossRefGoogle Scholar
  30. Kaufman L, Rousseeuw RJ (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York, 342 ppGoogle Scholar
  31. Keymer JE, Marquet PA, Velasco-Hernandez JX, Levin SA (2000) Extinction thresholds and metapopulation persistence in dynamic landscapes. American Naturalist 156:478–494CrossRefGoogle Scholar
  32. Laiolo P, Dondero F, Ciliento E, RolandoA A (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. Journal of Applied Ecology 41:294–304CrossRefGoogle Scholar
  33. Lepidopterologen-Arbeitsgruppe (2001) Tagfalter und ihre Lebensräume. Arten, Gefährdung, Schutz. Schweizerischer Bund für Naturschutz, Basel, 516 ppGoogle Scholar
  34. Lindenmayer DB, Cunningham RB, Donnelly CF, Lesslie R (2002) On the use of landscape surrogates as ecological indicators in fragmented forests. Forest Ecology and Management 159:203–216CrossRefGoogle Scholar
  35. Lundström-Gilliéron C, Schlaepfer R (2003) Hare abundance as an indicator for urbanisation and intensification of agriculture in Western Europe. Ecological Modelling 168:283–301CrossRefGoogle Scholar
  36. Mac Nally R (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiversity and Conservation 11:1397–1401CrossRefGoogle Scholar
  37. MacKenzie DI, Nichols JD, Hines JE, Knutson MG, Franklin AB (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84:2200–2207CrossRefGoogle Scholar
  38. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38:921–931CrossRefGoogle Scholar
  39. Manly BFJ (1997) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, London, 428 ppGoogle Scholar
  40. Mosteller F, Tukey J (1977) Data analysis and regression. Addison-Wesley, New York, 588 ppGoogle Scholar
  41. Pulliam HR (2000) On the relationship between niche and distribution. Ecology Letters 3:349–361CrossRefGoogle Scholar
  42. Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster-analysis. Journal of Computational and Applied Mathematics 20:53–65CrossRefGoogle Scholar
  43. Schneeberger N, Bürgi M, Kienast F (2007) Rates of landscape change at the northern fringe of the Swiss Alps: historical and recent tendencies. Landscape and Urban Planning 80:127–136CrossRefGoogle Scholar
  44. Schrott GR, With KA, King ATW (2005) On the importance of landscape history for assessing extinction risk. Ecological Applications 15:493–506CrossRefGoogle Scholar
  45. Söderström B, Svensson B, Vessby K, Glimskar A (2001) Plants, insects and birds in semi-natural pastures in relation to local habitat and landscape factors. Biodiversity and Conservation 10:1839–1863CrossRefGoogle Scholar
  46. Walsh CJ, Papas PJ, Crowther D, Yoo J (2004) Stormwater drainage pipes as a threat to a stream-dwelling amphipod of conservation significance, Austrogammarus australis, in southeastern Australia. Biodiversity and Conservation 13:781–793CrossRefGoogle Scholar
  47. Walter T, Schneider K and Gonseth Y (2003) Pages 152–155 in OECD (ed.), Eco-fauna-database: A tool for both determining the faunistic potential and estimating impacts of land use on animal species. OECD, ParisGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Michael Lütolf
    • 1
    • 2
  • Antoine Guisan
    • 2
  • Felix Kienast
    • 1
  1. 1. Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Laboratory for Conservation Biology (LBC), Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland

Personalised recommendations