Environmental Management

, Volume 42, Issue 2, pp 181–189 | Cite as

What Drives Accelerated Land Cover Change in Central Argentina? Synergistic Consequences of Climatic, Socioeconomic, and Technological Factors

  • Marcelo R. ZakEmail author
  • Marcelo Cabido
  • Daniel Cáceres
  • Sandra Díaz


Synergistic combinations of climatic and land use changes have the potential to produce the most dramatic impacts on land cover. Although this is widely accepted, empirical examples, particularly involving deforestation in Latin America, are still very few. The geographic extent and causes of deforestation in subtropical seasonally dry forests of the world have received very little attention. This is especially true for the Chaco forests in South America, which are being lost at an alarming rate, sometimes higher than those reported for tropical forests. On this basis, the aims of this study were to analyze the changes in land cover that have occurred during the last three decades of the 20th century in the Chaco forests of central Argentina, and to explain the factors that have driven those changes. Results show major land cover changes. Approximately 80% of the area that was originally undisturbed forest is now occupied by crops, pastures, and secondary scrub. The main proximate cause of deforestation has been agricultural expansion, soybean cultivation in particular. This appears as the result of the synergistic convergence of climatic, technological, and socioeconomic factors, supporting the hypothesis of a multiple-factor explanation for forest loss, while providing one of the very few existing analyses of changes in subtropical forests of the world.


Agricultural expansion Climate change Deforestation Great Chaco Land use Proximate causes Underlying factors 



We thank the Comisión Nacional de Actividades Espaciales (CONAE) and Instituto Gulich for providing the satellite images and Agustín Prado and Agencia Córdoba Ambiente S.E. for providing records and census data. We are very grateful to Dr. F. Stuart Chapin, III, Nicolás Lucas, and an anonymous reviewer for the constructive suggestions on our manuscript. This study was supported by the National University of Córdoba through SECyT (Resol. 162/06, 197/05, 137/04), the Agencia Córdoba Ciencia S.E., the CONICET (PID 7006), the FONCyT (PICT Redes 275, Préstamo BID 1728/OC-AR), the Darwin Initiative (8/116), and the Inter-American Institute for Global Change Research (IAI) (CRNII 2005 and 2015), which is supported by the U.S. National Science Foundation (Grant GEO-0452325).


  1. AAPRESID (2004) Siembra directa. Asociación Argentina de Productores en Siembra Directa. Available at:
  2. Achard F, Eva HD, Stibig HJ, Mayaux P, Gallego J, Richards T, Malingreau JP (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002CrossRefGoogle Scholar
  3. Allen J, Barnes DF (1985) The causes of deforestation in developing countries. Annals of the Association of American Geographers 75:163–184CrossRefGoogle Scholar
  4. Angelsen A, Kaimowitz D (1999) Rethinking the causes of deforestation: lessons from economic models. The World Bank Research Observer 14:73–98Google Scholar
  5. Baron JS, Rueth HM, Wolfe AM, Nydick KR, Allstott EJ, Minear JT, Moraska B (2000) Ecosystem responses to Nitrogen deposition in the Colorado front range. Ecosystems 3:352–368CrossRefGoogle Scholar
  6. Benhin JKA (2005) Agriculture and deforestation in the tropics: a critical theoretical and empirical review. Ambio-J Human Environ 35:9–16CrossRefGoogle Scholar
  7. Bertolasi R (2004) Argentina. Rural strategy. Formas de Organización de la Producción, Banco MundialGoogle Scholar
  8. Bolsa de Cereales (2003) Statistics 2001/2002. Bolsa de Cereales, Buenos Aires, ArgentinaGoogle Scholar
  9. Bucher EH (1982) Chaco and Caatinga—South American arid savannas, woodlands and thickets. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer-Verlag, pp 48–79Google Scholar
  10. Canziani O, Díaz S (1998) Impacts of climate change and variability in Latin America. Pages 187–230 in IPCC, regional impacts of climate change—special report of IPCC working group II. Cambridge University Press, CambridgeGoogle Scholar
  11. Chapin FS III, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature 405:234–242CrossRefGoogle Scholar
  12. Cochrane MA, Schulze MD (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: effects on forest structure, biomass, and species composition. Biotropica 31:2–16Google Scholar
  13. Craviotti C (2002) Pampas family farms and technological change: strategies and perspectives towards genetically modified crops and no-tillage systems. International Journal of Sociology of Agriculture and Food 10:23–33Google Scholar
  14. Dardanelli J (1998) Efficiency in the use of water by different tillage systems. In: Panigatti JL, Marelli H, Buschiazzo D, Gil R (eds) Zero tillage. Hemisferio Sur, Buenos Aires, pp 107–115Google Scholar
  15. Defries RS, Bounoua L, Collatz GJ (2002) Human modification of the landscape and surface climate in the next fifty years. Global Change Biology 8:438–458CrossRefGoogle Scholar
  16. Díaz S, Bonnin M, Laguens A, Prieto MR (1987) Strategies of natural resources exploitation and processes of vegetation change in the Río Copacabana basin (Ischilín, Córdoba). I. Mid 16th century to mid 19th century. Publicaciones del Instituto de Antropología, Nueva Serie 45:67–131Google Scholar
  17. Díaz S, Acosta A, Cabido M (1994) Community structure in montane grasslands of central Argentina in relation to land use. Journal of Vegetation Science 5:483–488CrossRefGoogle Scholar
  18. FAO (2001) State of the world’s forests 2001. Food and Agriculture Organization of the United NationsGoogle Scholar
  19. Fearnside PM (1993) Deforestation in the Brazilian Amazon: the effect of population and land tenure. Ambio-J Human Environ 8:537–545Google Scholar
  20. Fearnside PM (1995) Potential impacts of climatic change on natural forests and forestry in Brazilian Amazonia. Forest Ecology and Management 78:51–70CrossRefGoogle Scholar
  21. Fearnside PM (2001) Soybean cultivation as a threat to the environment in Brazil. Environmental Conservation 28:23–38Google Scholar
  22. Fischlin A, Midgley G (2007) Ecosystems, their properties, goods and services. In: IPCC, climate change 2007—the working group II contribution to the IPCC fourth assessment report. Cambridge University Press, CambridgeGoogle Scholar
  23. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS III, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574CrossRefGoogle Scholar
  24. Geist HJ, Lambin EF (2002) Proximate causes and underlying driving forces of tropical deforestation. BioScience 52:143–150CrossRefGoogle Scholar
  25. Hannah L, Lohse D, Hutchinson C, Carr JL, Lankerani A (1994) A preliminary inventory of human disturbance of world ecosystems. Ambio-J Human Environ 23:246–250Google Scholar
  26. INDEC (1988) National rural census. Instituto Nacional de Estadísticas y Censos, Buenos Aires, ArgentinaGoogle Scholar
  27. Janzen DH (1988) Tropical dry forests. The most endangered major tropical ecosystem. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington, DC, pp 130–137Google Scholar
  28. Kasperson JX, Kasperson RE, Turner BL II (1995) Regions at risk: comparisons of threatened environments. United Nations University Press, TokyoGoogle Scholar
  29. Lambin E, Geist HJ, Lepers E (2003) Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28:205–241CrossRefGoogle Scholar
  30. Laurance WF, Albernaz AKM, Da Costa C (2001) Is deforestation accelerating in the Brazilian Amazon? Environmental Conservation 28:305–311CrossRefGoogle Scholar
  31. Laurance WF, Albernaz AKM, Schroth G, Fearnside PM, Bergen S, Venticinque EM, Da Costa C (2002) Predictors of deforestation in the Brazilian Amazon. Journal of Biogeography 29:737–748CrossRefGoogle Scholar
  32. Magrin G, Gay García C (2007) Latin America. In: IPCC, Climate change 2007—the working group II contribution to the IPCC fourth assessment report. Cambridge University Press, CambridgeGoogle Scholar
  33. Marzluff JM, Hamel N (2001) Land use issues. In: Levin S (ed) Encyclopedia of biodiversity. Academic Press, New York, pp 659–673Google Scholar
  34. McCarthy JJ, Canziani OS, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, CambridgeGoogle Scholar
  35. McKinney ML (2002) Urbanization, biodiversity, and conservation. BioScience 52:883–890CrossRefGoogle Scholar
  36. Mertens B, Sunderlin W, Ndoye O, Lambin EF (2000) Impact of macro-economic changes on deforestation in south Cameroon: integration of household survey and remotely sensed data. World Development 28:983–999CrossRefGoogle Scholar
  37. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being. Current state and trends—findings of the condition and trends working group. Island Press, Washington, DCGoogle Scholar
  38. Moglia G, Giménez AM (1998) Anatomic features of the hydro-system of the main tree species of the Chaco region in Argentina. Revista de Investigaciones Agrarias Sistemas y Recursos Forestales 7:53–71Google Scholar
  39. Mooney HA, Bullock SH, E Medina, E (1995) Introduction. In: Bullock, SH, Mooney HA, E Medina, E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 1–8Google Scholar
  40. Morello J (1983) The Great Chaco: expansion of the agricultural frontier from the ecological-environmental perspective. In: Centro Internacional de Formación en Ciencias Ambientales (ed) Expansion of the Agricultural Frontier and the Environment in Latin America. CEPAL-PNUMA-CIFCA, pp 341–396Google Scholar
  41. Morello J, Saravia Toledo C (1959) The Chaco forest I. Original landscape, natural landscape and cultural landscape of eastern Salta. Revista Agronómica del Noroeste Argentino 3:5–82Google Scholar
  42. Morello J, Buzai GD, Baxendale CA, Rodríguez AF, Matteucci SD, Godagnone RE, Casas RR (2000) Urbanization and the consumption of fertile land and other ecological changes: the case of Buenos Aires. Environment & Urbanization 12:119–132CrossRefGoogle Scholar
  43. Natenzon CE, Olivera C (1994) Deforestation in the La Rioja plains (1900–1960). Desarrollo Económico 34:263–284CrossRefGoogle Scholar
  44. Noble IR, Dirzo R (1997) Forests as human-dominated ecosystems. Science 277:522–525CrossRefGoogle Scholar
  45. Pengue W (2000) Transgenic crops. Where are we going? Lugar Editora, UNESCOGoogle Scholar
  46. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. Journal of Biogeography 27:261–273CrossRefGoogle Scholar
  47. Peters DPC, Pielke RA, Bestelmeyer BT, Allen CD, Munsoon-Mcgee S, Havstad KM (2004) Cross-scale interactions, nonlinearities, and forecasting catastrophic events. Proceedings of the National Academy of Sciences USA 101:15130–15135CrossRefGoogle Scholar
  48. Ramankutty N, Foley JA, Olejniczak NJ (2002) People on the land: changes in global population and croplands during the 20th century. Ambio-J Human Environ 31:251–257CrossRefGoogle Scholar
  49. Redford K, Taber A, Simonetti J (1990) There is more to diversity than the tropical rain forest. Conservation Biology 4:328–330CrossRefGoogle Scholar
  50. Rudel T, Roper J (1996) Regional patterns and historical trends in tropical deforestation, 1976–1990: a qualitative comparative analysis. Ambio-J Human Environ 27:160–166Google Scholar
  51. Rudel TK, Coomes OT, Moran E, Achard F, Angelsen A, Xu J, Lambin E (2005) Forest transitions: towards a global understanding of land use change. Global Environmental Change 15:23–31CrossRefGoogle Scholar
  52. SAGyA (1999) Provincial Rural Census. Secretaria de Agricultura Ganadería y Alimentación. Gobierno de la Provincia de Córdoba, Córdoba, ArgentinaGoogle Scholar
  53. Sala OE, Chapin FS III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774CrossRefGoogle Scholar
  54. Sayago M (1969) Phytogeographic study of northern Córdoba. Boletín Academia Nacional de Ciencias Córdoba 46:123–427Google Scholar
  55. Schofield CJ, Bucher EH (1986) Industrial contributions to desertification in South America. Trends in Ecology and Evolution 1:78–80CrossRefGoogle Scholar
  56. Silvetti F, Cáceres D (1998) A socio-historic perspective of the social reproductive strategies of small farmers in northern Córdoba. Debate Agrario 28:103–127Google Scholar
  57. Sivakumar MVK (2007) Interactions between climate and desertification. Agricultural and Forest Meteorology 142:143–155CrossRefGoogle Scholar
  58. Sociedad Rural Argentina (1992) Statistical appendixes. Revista Índices, 4to Trimestre de 1992Google Scholar
  59. Southworth J, Tucker C (2001) The influence of accessibility, local institutions, and socioeconomic factors on forest cover change in the mountains of Western Honduras. Mountain Research and Development 21:276–283CrossRefGoogle Scholar
  60. Steininger MK, Tucker CJ, Townshend JRG, Killeen TJ, Desch A, Bell V, Ersts P (2001) Tropical deforestation in the Bolivian Amazon. Environmental Conservation 28:127–134CrossRefGoogle Scholar
  61. Sunderlin WD, Ndoye O, Bikié H, Laporte N, Mertens B, Pokam J (2000) Economic crisis, small-scale agriculture, and forest cover change in southern Cameroon. Environmental Conservation 27:284–290CrossRefGoogle Scholar
  62. Suriano JM, Perpozzi LH, Martinez DE (1992) Global change: climatic trends in Argentina and in the world. Ciencia Hoy 3:32–39Google Scholar
  63. Tálamo A, Caziani SM (2003) Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. Forest Ecology and Management 184:79–92CrossRefGoogle Scholar
  64. Tilman D, Fargione J, Wolff B, C`Antonio D, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284CrossRefGoogle Scholar
  65. Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biological Conservation 94:133–142CrossRefGoogle Scholar
  66. Turner BLI, Meyer WB (1994) Global land-use and land-cover change: an overview. In: Meyer WB, Turner BLI (eds) Changes in land use and land cover: a global perspective. Cambridge University Press, Cambridge, pp 3–10Google Scholar
  67. Vasconcelos MJP, Mussá Biai JC, Araújo A, Diniz MA (2002) Land cover change in two protected areas of Guinea-Bissau (1956–1998). Applied Geography 22:139–156CrossRefGoogle Scholar
  68. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman D (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737–750Google Scholar
  69. Zak MR, Cabido M (2002) Spatial patterns of the Chaco vegetation of central Argentina: integration of remote sensing and phytosociology. Applied Vegetation Science 5:213–226CrossRefGoogle Scholar
  70. Zak MR, Cabido M, Hodgson JG (2004) Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biological Conservation 120:589–598CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Marcelo R. Zak
    • 1
    Email author
  • Marcelo Cabido
    • 2
  • Daniel Cáceres
    • 3
  • Sandra Díaz
    • 2
  1. 1.Instituto Multidisciplinario de Biología Vegetal (IMBIV) and Cátedra de Recursos Naturales y Gestión Ambiental, Licenciatura en Geografía, Facultad de Filosofía y HumanidadesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.IMBIV, Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas and Facultad de Ciencias AgropecuariasUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations