Environmental Management

, Volume 39, Issue 3, pp 369–384 | Cite as

Distribution of Diatoms in Relation to Land Use and pH in Blackwater Coastal Plain Streams

  • Robert A. Zampella
  • Kim J. Laidig
  • Rex L. Lowe
Article

Abstract

We compared the composition of diatom assemblages collected from New Jersey Pinelands blackwater streams draining four different land uses, including forest land, abandoned-cranberry bogs, active-cranberry bogs, and developed and upland-agricultural land. Over a 2-year period (2002–2003), we collected 132 diatom taxa at 14 stream sites. Between-year variability in the composition of stream samples was high. Most diatom species were rarely encountered and were found in low abundance. Specific conductance and pH were higher at developed/agricultural sites compared with all other site types. Neither species richness nor genus richness was significantly different between stream types. However, clear community patterns were evident, and a significant difference in species composition existed between the developed/agricultural sites and both cranberry and forest sites. The primary community gradient, represented by the first axis of a DCA ordination, was associated with variations in pH and specific conductance. Although community patterns revealed by ordinating the data collected in 2002 differed from those obtained using the 2003 data, both ordinations contrasted the developed/agricultural sites and the other sites. Acidobiontic and acidophilous diatoms characterized the dominant species at forest, abandoned-bog, and cranberry sites, whereas indifferent species dominated the developed/agricultural samples. Although our study demonstrated a relationship between the composition of diatom assemblages and watershed conditions, several factors, including taxonomic problems, the large number of diatom species, incomplete pH classifications, and year-to-year variability may limit the utility of diatom species as indicators of watershed conditions in the New Jersey Pinelands.

Keywords

Blackwater diatoms Land use New Jersey Pinelands pH Water-quality indicators 

References

  1. Anderson J. R., E. E. Hardy, J. T. Roach, R. E. Witmer. 1976. A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964Google Scholar
  2. Arzet K., D. Krause-Dellin, C. Steinberg. 1986a. Acidification of four lakes in the Federal Republic of Germany as reflected by diatom assemblages, cladoceran remains and sediment chemistry. In: J.P. Smol, R.W. Battarbee, R.B. Davis, J. Meriläinen (eds). Diatoms and lake acidity, Dr. W. Junk Publishers, Dordrecht, The Netherlands, pp 227–250Google Scholar
  3. Arzet K., C. Steinberg, R. Psenner, N. Schulz. 1986b. Diatom distribution and diatom inferred pH in the sediment of four alpine lakes. Hydrobiologia 143:247–254CrossRefGoogle Scholar
  4. Barbour M. T., J. Gerritsen, B. D. Snyder, J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.CGoogle Scholar
  5. Battarbee R. W., D. F. Charles. 1986. Diatom-based pH reconstruction studies of acid lakes in Europe and North America: a synthesis. Water, Air and Soil Pollution 30:347–354CrossRefGoogle Scholar
  6. Battarbee R. W., D. F. Charles, S. S. Dixit, I. Renberg. 1999. Diatoms as indicators of surface water acidity. In: E. F. Stoermer, J. P. Smol (eds). The diatoms: applications for the environmental sciences. Cambridge University Press, Cambridge, UK, pp 85–127Google Scholar
  7. Camburn K. E., D. F. Charles. 2000. Diatoms of low-alkalinity lakes in the northeastern United States. The Academy of Natural Sciences of Philadelphia, Philadelphia, PennsylvaniaGoogle Scholar
  8. Carpenter K. D., I. R. Waite. 2000. Relations of habitat-specific algal assemblages to land use and water chemistry in the Willamette Basin, Oregon. Environ Monit Assess 64:247–257CrossRefGoogle Scholar
  9. Charles D. F. 1985. Relationships between surface sediment diatom assemblages and lakewater characteristics in Adirondack lakes. Ecology 66:994–1011CrossRefGoogle Scholar
  10. Charles D. F., J. P. Smol. 1988. New methods for using diatoms and chrysophytes to infer past pH of low-alkalinity lakes. Limnol Oceanogr 33:1451–1462CrossRefGoogle Scholar
  11. Chessman B., I. Growns, J. Currey, N. Plunkett-Cole. 1999. Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshwater Bio 41:317–331CrossRefGoogle Scholar
  12. Cuffney T. F., M. R. Meador, S. D. Porter, M. F. Gurtz. 1997. Distribution of fish, benthic invertebrate, and algal communities in relation to physical and chemical conditions, Yakima River Basin, Washington, 1990, U. S. Geological Survey Water Resources Investigations Report 96–4280, Raleigh, North CarolinaGoogle Scholar
  13. Denys L. 2004. Relation of abundance-weighted averages of diatom indicator values to measure environmental conditions in standing freshwaters. Ecol Indicators 4:255–275CrossRefGoogle Scholar
  14. Dixit S. S. 1986. Diatom-inferred pH calibration of lakes near Wawa, Ontario. Can J Botany 64:1129–1133CrossRefGoogle Scholar
  15. Dixit S. S., A. S. Dixit, R. D. Evans. 1988. Sedimentary diatom assemblages and their utility in computing diatom-inferred pH in Sudbury Ontario lakes. Hydrobiologia 169:135–148Google Scholar
  16. Dixit A. S., S. S. Dixit, J. P. Smol. 1992. Long-term trends in lake water pH and metal concentrations inferred from diatoms and chrysophytes in three lakes near Sudbury, Ontario. Can J Fisheries Aquatic Sci 49:17–24CrossRefGoogle Scholar
  17. Dow C. L., R. A. Zampella. 2000. Specific conductance and pH as indicators of watershed disturbance in streams of the New Jersey Pinelands, USA. Environ Manage 26:437–445CrossRefGoogle Scholar
  18. Dufrêne M., P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366CrossRefGoogle Scholar
  19. Eck P. 1990. The American cranberry. Rutgers University Press, New Brunswick, New JerseyGoogle Scholar
  20. Ford J. 1986. The recent history of a naturally acidic lake (Cone Pond, N.H.). In: J. P. Smol, R. W. Battarbee, R. B. Davis, J. Meriläinen (eds). Diatoms and lake acidity. Dr. W. Junk Publishers, Dordrecht, The Netherlands, pp 131–148Google Scholar
  21. Fore L. S. 2003. Response of diatom assemblages to human disturbance: development and testing of a multimetric index for the mid-Atlantic region (USA). In: T. P. Simon (ed), Biological response signatures: indicator patterns using aquatic communities. CRC Press, Roca Raton, Florida, pp 445–480Google Scholar
  22. Fore L. S., C. Grafe. 2002. Using diatoms to assess the biological condition of large rivers in Idaho (U.S.A.). Freshwater Biol 47:2015–2037CrossRefGoogle Scholar
  23. Hill M. O. 1979a. DECORANA—a FORTRAN Program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, New YorkGoogle Scholar
  24. Hill M. O. 1979b. TWINSPAN—a FORTRAN Program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Cornell University, Ithaca, New YorkGoogle Scholar
  25. Hill M. O., H. G. Gauch Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58CrossRefGoogle Scholar
  26. Hill B. H., R. J. Stevenson, Y. Pan, A. T. Herlihy, P. R. Kaufmann, C. B. Johnson. 2001. Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species level. J North Am Benthol Soc 20:299–310CrossRefGoogle Scholar
  27. Hill B. H., A. T. Herlihy, P. R. Kaufmann, S. J. DeCelles, M. A. Vander Borgh. 2003. Assessment of streams of the eastern United States using a periphyton index of biotic integrity. Ecol Indicators 2:325–338CrossRefGoogle Scholar
  28. Holmes R. W., M. C. Whiting, J. L. Stoddard. 1989. Changes in diatom-inferred pH and acid neutralizing capacity in a dilute, high elevation, Sierra Nevada lake since a.d. 1825. Freshwater Biol 21:295–310CrossRefGoogle Scholar
  29. Howes B. L., J. M. Teal. 1995. Nutrient balance of a Massachusetts cranberry bog and relationships to coastal eutrophication. Environ Sci Technology 29:960–974Google Scholar
  30. Hustedt F. 1930. Bacillariophyta (Diatomeae). In: A. Pascner (ed). Die Süßwasser-Flora Mitteleuropas. Verlag von Gustav Fischer, Jena, Germany, pp 1–466Google Scholar
  31. Kelly M. G., C. J. Penny, B. A. Whitton. 1995. Comparative performance of benthic diatom indices used to assess river water quality. Hydrobiologia 302:179–188Google Scholar
  32. Krammer K., H. Lange-Bertalot. 1986. Bacillariophyceae. a. Teil: Naviculaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–876Google Scholar
  33. Krammer K., H. Lange-Bertalot. 1988. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–596Google Scholar
  34. Krammer K., H. Lange-Bertalot. 1991a. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In: H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–576Google Scholar
  35. Krammer K., H. Lange-Bertalot. 1991b. Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. In: H. Ettl, G. Gärtner, J. Gerloff, H. Heynig, D. Mollenhauer (eds). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Germany, pp 1–437Google Scholar
  36. Kutka F. J., C. Richards. 1996. Relating diatom assemblage structure to stream habitat quality. J North American Benthol Soc 15:469–480CrossRefGoogle Scholar
  37. Leland H. V. 1995. Distribution of phytobenthos in the Yakima River basin, Washington, in relation to geology, land use, and other factors. Can J Fisheries Aquat Sci 52:1108–1129Google Scholar
  38. Leland H. V., S. D. Porter. 2000. Distribution of benthic algae in the upper Illinois River basin in relation to geology and land use. Freshwater Biol 44:279–301CrossRefGoogle Scholar
  39. Lowe R. L. 1974. Environmental requirements and pollution tolerance of freshwater diatoms. EPA-670/4-74-005. U. S. Environmental Protection Agency, Cincinnati, OhioGoogle Scholar
  40. McCune B., M. J. Mefford. 1999. PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  41. McCune B., J. B. Grace. 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, OregonGoogle Scholar
  42. Meriläinen J. 1967. The diatom flora and hydrogen-ion concentration of the water. Ann Botan Fenn 4:51–58Google Scholar
  43. Morgan M. D. 1985. Photosynthetically elevated pH in acid waters with high nutrient content and its significance for the zooplankton community. Hydrobiologia 128:239–247CrossRefGoogle Scholar
  44. Morgan M. D. 1987. Impact of nutrient enrichment and alkalinization on periphyton communities in the New Jersey Pine Barrens. Hydrobiologia 144:233–241CrossRefGoogle Scholar
  45. Morgan M. D., R. E. Good. 1988. Stream chemistry in the New Jersey Pinelands: the influence of precipitation and watershed disturbance. Water Res Res 24:1091–1100Google Scholar
  46. Morgan M. D., K. R. Philipp 1986. Biological Conservation. The effect of agricultural and residential development on aquatic macrophytes in the New Jersey Pine Barrens. Biol Conserv 35:143–158CrossRefGoogle Scholar
  47. Moul E. T., H. F. Buell. 1979. Algae of the Pine Barrens. In: R. T. T. Forman (ed), Pine Barrens ecosystem and landscape. Academic Press, New York, pp 425–440Google Scholar
  48. Ohl L. E., R. A. Gont, E. D. Dibble. 1990. Diatom response to liming of a temperate, brown water lake. Can J Botany 68:347–353Google Scholar
  49. Pan Y., R. J. Stevenson, B. H. Hill, A. T. Herlihy, G. B. Collins. 1996. Using diatoms as indicators of ecological conditions in lotic systems: a regional assessment. J North Am Benthol Soc 15:481–495CrossRefGoogle Scholar
  50. Pan Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann, A. T. Herlihy. 1999. Spatial patterns and ecological determinants of benthic algal assemblages in mid-Atlantic streams, USA. J Phycol 35:460–468CrossRefGoogle Scholar
  51. Patrick R., C. W. Reimer. 1966. The diatoms of the United States. Vol. 1. Monograph 13. Academy of Natural Sciences of Philadelphia, Philadelphia, Pennsylvania, pp 1–688Google Scholar
  52. Patrick R., C. W. Reimer. 1975. The diatoms of the United States. Vol. 2. Part 1. Monograph 13. Academy of Natural Sciences of Philadelphia. Philadelphia, Pennsylvania, pp 1–213Google Scholar
  53. Patrick R., B. Matson, L. Anderson. 1979. Streams and lakes in the Pine Barrens. In: R. T. T. Forman (ed), Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 169–193Google Scholar
  54. Patrick R. 1996. Rivers of the United States of America. Volume III: The eastern and southeastern states. John Wiley and Sons, New YorkGoogle Scholar
  55. Rhodehamel E. C. 1979a. Geology of the Pine Barrens of New Jersey. In: R. T. T. Forman (ed). Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 39–60Google Scholar
  56. Rhodehamel E. C. 1979b. Hydrology of the New Jersey Pine Barrens. In: R. T. T. Forman (ed). Pine Barrens: ecosystem and landscape. Academic Press, New York, pp 147–167Google Scholar
  57. Rice W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  58. Rice W. R. 1990. A consensus combined p-value test and family-wide significance of component tests. Biometrics 46:303–308CrossRefGoogle Scholar
  59. Simola H. 1986. Diatom responses to acidification and lime treatment in a clear-water lake: comparison of two methods of analysis of a diatom stratigraphy. In: J. P. Smol, R. W. Battarbee, R. B. Davis, J. Meriläinen (eds). Diatoms and lake acidity, Dr. W. Junk Publishers, Dordrecht, The Netherland, pp 221–226Google Scholar
  60. Stevenson R. J., Y. Pan. 1999. Assessing environmental conditions in rivers and streams with diatoms. In: E. F. Stoemer, J. P. Smol (eds). The diatoms: applications for the environmental sciences. Cambridge University Press, Cambridge, UK, pp 11–40Google Scholar
  61. U. S. Department of Agriculture. 2003. 2002 Cranberry statistics. New Jersey Statistics Service, U.S. Department of Agriculture, Trenton, New JerseyGoogle Scholar
  62. van Dam H., A. Mertens, J. Sinkeldam. 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands J Aquat Ecol 28:117–133CrossRefGoogle Scholar
  63. Winkler M. G. 1988. Paleolimnology of a Cape Cod kettle pond: diatoms and reconstructed pH. Ecol Monogr 58:197–214CrossRefGoogle Scholar
  64. Zampella R. A. 1994. Characterization of surface water quality along a watershed disturbance gradient. Water Resources Bull 30:605–611Google Scholar
  65. Zampella R. A., J. F. Bunnell. 1998. Use of reference-site fish assemblages to assess aquatic degradation in Pinelands streams. Ecol Applic 8:645–658CrossRefGoogle Scholar
  66. Zampella R. A., J. F. Bunnell. 2000. The distribution of anurans in two river systems of a Coastal Plain watershed. J Herpetol 34:210–221CrossRefGoogle Scholar
  67. Zampella R. A., K. J. Laidig. 1997. Effect of watershed disturbance on Pinelands stream vegetation. J Torrey Botanical Soc 124:52–66CrossRefGoogle Scholar
  68. Zampella R. A., J. F. Bunnell, K. J. Laidig, L. Dow. 2001. The Mullica River Basin: a report to the Pinelands Commission on the status of the landscape and selected aquatic and wetland resources. Pinelands Commission, New Lisbon, New JerseyGoogle Scholar
  69. Zampella R. A., J. F. Bunnell, K. J. Laidig, N. A. Procopio. 2003. The Rancocas Creek Basin: a report to the Pinelands Commission on the status of selected aquatic and wetland resources. Pinelands Commission, New Lisbon, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • Robert A. Zampella
    • 1
  • Kim J. Laidig
    • 1
  • Rex L. Lowe
    • 2
  1. 1.Pinelands CommissionNew LisbonUSA
  2. 2.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations