Environmental Management

, Volume 39, Issue 5, pp 631–647 | Cite as

Integrated Measures of Anthropogenic Stress in the U.S. Great Lakes Basin

  • Nicholas P. DanzEmail author
  • Gerald J. Niemi
  • Ronald R. Regal
  • Tom Hollenhorst
  • Lucinda B. Johnson
  • JoAnn M. Hanowski
  • Richard P. Axler
  • Jan J. H. Ciborowski
  • Thomas Hrabik
  • Valerie J. Brady
  • John R. Kelly
  • John A. Morrice
  • John C. Brazner
  • Robert W. Howe
  • Carol A. Johnston
  • George E. Host


Integrated, quantitative expressions of anthropogenic stress over large geographic regions can be valuable tools in environmental research and management. Despite the fundamental appeal of a regional approach, development of regional stress measures remains one of the most important current challenges in environmental science. Using publicly available, pre-existing spatial datasets, we developed a geographic information system database of 86 variables related to five classes of anthropogenic stress in the U.S. Great Lakes basin: agriculture, atmospheric deposition, human population, land cover, and point source pollution. The original variables were quantified by a variety of data types over a broad range of spatial and classification resolutions. We summarized the original data for 762 watershed-based units that comprise the U.S. portion of the basin and then used principal components analysis to develop overall stress measures within each stress category. We developed a cumulative stress index by combining the first principal component from each of the five stress categories. Maps of the stress measures illustrate strong spatial patterns across the basin, with the greatest amount of stress occurring on the western shore of Lake Michigan, southwest Lake Erie, and southeastern Lake Ontario. We found strong relationships between the stress measures and characteristics of bird communities, fish communities, and water chemistry measurements from the coastal region. The stress measures are taken to represent the major threats to coastal ecosystems in the U.S. Great Lakes. Such regional-scale efforts are critical for understanding relationships between human disturbance and ecosystem response, and can be used to guide environmental decision-making at both regional and local scales.


Great Lakes Coastal ecosystems Anthropogenic stress GIS 



We are grateful to Connie Host, Paul Meysembourg, Jim Sales, and Gerry Sjerven for assistance compiling GIS data. Dennis Albert, Jim Lind, Elizabeth R. Smith, and two anonymous reviewers provided valuable comments on earlier drafts. This research was supported by a grant from the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) Estuarine and Great Lakes (EaGLe) program through funding to the Great Lakes Environmental Indicators (GLEI) project, U.S. EPA Agreement EPA/R-8286750. This document has not been subjected to the Agency’s required peer and policy review and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. This is contribution number 392 of the Center for Water and the Environment, Natural Resources Research Institute, University of Minnesota Duluth.


  1. Albert D. A., L. D. Minc. 2004. Plants as regional indicators of Great Lakes coastal wetland health. Aquatic Ecosyst Health Manage 7:233–247CrossRefGoogle Scholar
  2. Ameel J., E. Ruzycki, C. J. Owen, R. Axler. 1998. (revised 2003) Analytical chemistry and quality assurance procedures for natural water, wastewater, and sediment samples. Natural Resources Research Institute, University of Minnesota, Duluth Technical Report NRRI/TR-98/28. Duluth, Minnesota 55811Google Scholar
  3. Arbia G. 1989. Statistical effect of data transformations: a proposed general framework. In M. Goodchild, S. Gopal (eds), The accuracy of spatial data bases. Taylor and Francis, London Pages 249–259Google Scholar
  4. Axler R. P., C. J. Owen. 1994. Fluorometric measurement of chlorophyll and phaeophytin: Whom should you believe? Lake Reservoir Manage 8:143–151Google Scholar
  5. Bailey R.G. 1989. Explanatory supplement to the ecoregions map of the continents. Envir Conserv 15:307–309CrossRefGoogle Scholar
  6. Beanlands G. E., W. J. Erckmann, G. H. Orians, J. O’Riordan, D. Policansky, M. S. Sada, B. Sadler (eds), 1986. Cumulative environmental effects: a binational perspective. Canadian Environmental Assessment Research Council/U.S. National Research Council, Ottawa and Washington, DCGoogle Scholar
  7. Becker G. V. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WisconsinGoogle Scholar
  8. Bhagat Y. 2005. Fish indicators of anthropogenic stress at Great Lakes coastal margins: multimetric and multivariate approaches. MS Thesis, University of Windsor, Ontario, Canada, 119 ppGoogle Scholar
  9. Borcard D., P. Legendre, P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  10. Boughton D. A., E. R. Smith, R. V. O’Neill. 1999. Regional vulnerability: a conceptual framework. Ecosystem Health 5:312–322CrossRefGoogle Scholar
  11. Brazner J. C. 1997. Regional, habitat, and human development influences on coastal wetland and beach fish assemblages in Green Bay, Lake Michigan. J Great Lakes Res 23:36–51Google Scholar
  12. Brazner J.C., D. K. Tanner, D. A. Jensen, A. Lemke. 1998. Relative abundance and distribution of ruffe (Gymnocephalus cernuus) in a Lake Superior coastal wetland fish assemblage. J Great Lakes Res 24:293–303Google Scholar
  13. Brazner J. C., D. A. Jensen. 1999. Zebra mussel [Dreissena polymorpha (Pallas)] colonization of rusty crayfish [Orconectes rusticus (Girard)] in Green Bay, Lake Michigan. Am Midland Naturalist 143:250–256CrossRefGoogle Scholar
  14. Bryce S. A., D. P. Larsen, R. M. Hughes, P. Kaufmann. 1999. Assessing relative risks to aquatic ecosystems: a mid-Appalachian case study. J Am Water Resources Assoc 35:23–36Google Scholar
  15. Crosbie B., P. Chow-Fraser. 1999. Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes basin. Can J Fisheries Aquatic Sci 56:1781–1791CrossRefGoogle Scholar
  16. Danz N. P., R. R. Regal, G. J. Niemi, V. Brady, T. Hollenhorst, L. B. Johnson, G. E. Host, J. M. Hanowski, C. A. Johnston, T. Brown, J. Kingston, J. R. Kelly. 2005. Environmentally stratified sampling design for the development of Great Lakes environmental indicators. Envir Monitoring Assessment 102:41–65CrossRefGoogle Scholar
  17. Detenbeck N. E., S. M. Galatowitsch, J. Atkinson, H. Ball. 1999. Evaluating perturbations and developing restoration strategies for inland wetlands in the Great Lakes Basin. Wetlands 19:789–820Google Scholar
  18. Environment Canada and U.S. Environmental Protection Agency. 2003. State of the Great Lakes 2003. EPA 905-R-03-004, Governments of Canada and the U.S.Google Scholar
  19. Fore L. 2003. Developing biological indicators: Lessons learned from Mid-Atlantic streams. EPA 903/R-003/003. U.S. Environmental Protection Agency, Office of Environmental Information and Mid-Atlantic Integrated Assessment Program, Region 3, Ft. Meade, MarylandGoogle Scholar
  20. Goodchild M. F., N. S-N. Lam. 1980. Areal interpolation: a variant of the traditional spatial problem. Geo-Processing 1:297–312Google Scholar
  21. Gotway C. A., L. J. Young. 2002. Combining incompatible spatial data. J the American Statistical Association 97:632–648CrossRefGoogle Scholar
  22. Government of Canada and U.S. Environmental Protection Association. 1995. The Great Lakes: An environmental atlas and resource book. 3rd ed. EPA 905-B-95-001, Chicago, IllinoisGoogle Scholar
  23. Grabas G., S. Pemanen, A. Dove, M. Galloway, K. Holmes. 2004. Durham Region Coastal Wetland Monitoring Project: Year 2 Technical Report. Environment Canada and Central Lake Ontario Conservation Authority, Downsview, OntarioGoogle Scholar
  24. Hanowski J., N. Danz, J. Lind, G. Niemi, J. Sales. 2003. Birds of western Great Lakes forests.
  25. Hartmann H. C. 1990. Climate change impacts on Laurentian Great Lakes levels. Climate Change 17:49–67CrossRefGoogle Scholar
  26. Hocutt C. H., E. O. Wiley. 1986. The zoogeography of North American freshwater fishes. Wiley, New YorkGoogle Scholar
  27. Holeck K. T., E. L. Mills, H. J. MacIsaac, M. R. Dochoda, R. I. Colautti, A. Ricciardi. 2004. Bridging troubled waters: biological invasions, transoceanic shipping, and the Laurentian Great Lakes. BioScience 54:919–929CrossRefGoogle Scholar
  28. Host G. E., J. Schuldt, J. J. Ciborowski, L. B. Johnson, T. Hollenhorst, C. Richards. 2005. Use of GIS and remotely sensed data for a priori identification of reference areas for Great Lakes coastal ecosystems. Int J Remote Sensing 26(23):5325–5341CrossRefGoogle Scholar
  29. Howe R. W., G. J. Niemi, S. J. Lewis, D. A. Welsh. 1998. A standard method for monitoring songbird populations in the Great Lakes region. Loon 70:188–197Google Scholar
  30. Hughes R. M., P. R. Kaufman, A. T. Herlihy, T. M. Kincaid, L. Reynolds, D. P. Larsen. 1998. A process for developing and evaluating indices of fish assemblage integrity. Can J Fish Aquat Sci 55:1618–1631CrossRefGoogle Scholar
  31. Hunsaker C. T., R. L. Graham, G. W. Suter II, R. V. O’Neill, L. W. Barnthouse, R. H. Gardner. 1990. Assessing ecological risk on a regional scale. Envir Manage 14:325–332CrossRefGoogle Scholar
  32. International Joint Commission. 2003. Status of restoration activities in Great Lakes Areas of Concern: a special report.
  33. James F. C., C. E. McCulloch. 1990. Multivariate analysis in ecology and systematics: panacea or Pandora’s box? Annu Rev Ecol System 21:129–166Google Scholar
  34. Karr J. R. 1995. Using biological criteria to protect ecological health. in D. J. Rapport, C. Gaudet, P. Calow (eds), Evaluating and monitoring the health of large scale ecosystems. Springer-Verlag, New York pp 137–152 Google Scholar
  35. Karr J. R., E. W. Chu. 1999. Restoring life in running waters: better biological monitoring. Island Press, Washington, DCGoogle Scholar
  36. Kerans B. L., J. R. Karr. 1994. A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Applic 4:768–785CrossRefGoogle Scholar
  37. Kling G. W., K. Hayhoe, L. B. Johnson, J. J. Magnuson, S. Polasky, S. K. Robinson, B. J. Shuter, M. M. Wander, D. J. Wuebbles, D. R. Zak, R. L. Lindroth, S. C. Moser, M. L. Wilson. 2003. Confronting climate change in the Great Lakes region: impacts on our communities and ecosystems. Union of Concerned Scientists, Cambridge, Massachusetts, and Ecological Society of America, Washington, DCGoogle Scholar
  38. Kunkel K., S. A. Changon, T. E. Croley II, F. H. Quinn. 1998. Transposed climates for study of water supply variability on the Laurentian Great Lakes. Climate Change 38:387–404CrossRefGoogle Scholar
  39. Locantore N. W., L. T. Tran, R. V. O’Neill, P. W. McKinnis, E. R. Smith, M. O’Connell. 2004. An overview of data integration methods for regional assessment. Envir Monit Assess 94:249–261CrossRefGoogle Scholar
  40. Lougheed V. L., B. Crosbie, P. Chow-Fraser. 2001. Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Can J Fish Aquatic Sci 58:1603–1612CrossRefGoogle Scholar
  41. Magnuson J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, R. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler, F. W. Quinn. 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian shield region. Hydrol Processes 11:825–871CrossRefGoogle Scholar
  42. Markhoff J., G. Shapiro. 1973. The linkage of data describing overlapping geographical units. Historical Methods Newslett 7:34–46Google Scholar
  43. Miller C. M. 2003. Effects of anthropogenic development on breeding bird abundance and communities. MS Thesis, University of Minnesota Duluth, 67 ppGoogle Scholar
  44. Mortsch L. D. 1998. Assessing the impact of climate change on the Great Lakes shoreline wetlands. Climate Change 40:391–416CrossRefGoogle Scholar
  45. Mortsch L. D., F. H. Quinn. 1996. Climate change scenarios for Great Lakes Basin ecosystem studies. Limnol Oceanography 41:903–416CrossRefGoogle Scholar
  46. Nichols J., S. Bradbury, J. Swartout. 1999. Derivation of wildlife values for mercury. J Toxicol Envir Health Part B 2:325–355CrossRefGoogle Scholar
  47. Niemi G. J., M. E. McDonald. 2004. Application of ecological indicators. Annu Rev Ecol Evolution Systematics 35:89–111CrossRefGoogle Scholar
  48. Niemi G. J., D. Wardrop, R. Brooks, S. Anderson, V. Brady, H. Paerl, C. Rakocinski, M. Brouwer, B. Levinson, M. McDonald. 2004. Rationale for a new generation of indicator for coastal waters. Envir Health Perspect 112:979–986Google Scholar
  49. O’Connell T. J., L. E. Jackson, R. P. Brooks. 1998. Bird guilds as indicators of ecological condition in the central Appalachians. Ecol Applic 10:1706–1721CrossRefGoogle Scholar
  50. O’Neill R. V., C. T. Hunsaker, K. B. Jones, K. H. Riiters, J. D. Wickham, P. Schwarz, I. A. Goodman, B. Jackson, W. S. Baillargeon. 1997. Monitoring environmental quality at the landscape scale. BioScience 47:513–519CrossRefGoogle Scholar
  51. Reavie E. D., R. P. Axler, G. V. Sgro, J. C. Kingston, A. R. Kireta, T. N. Brown, N. P. Danz, and T. P. Hollenhorst. 2006. Diatom-based weighted-averaging models for Great Lakes coastal water quality: relationships to watershed characteristics. Journal of Great Lakes Research 32:321–347Google Scholar
  52. Rencher A. C. 1995. Methods of multivariate analysis. John Wiley & Sons, New York, New YorkGoogle Scholar
  53. Ricciardi A. 2001. Facilitative interactions among aquatic invaders: is an ‘invasional meltdown’ occurring in the Great Lakes? Can J Fisheries Aquat Sci 58:2513–2525CrossRefGoogle Scholar
  54. Richards C., L. B. Johnson, G. E. Host. 1996. Landscape-scale influences on stream habitats and biota. Can J Fisheries Aquat Sci 53:295–311CrossRefGoogle Scholar
  55. Shoemaker D. J. 1994. Cumulative environmental assessment. Department of Geography Publication Series, Number 42, University of Waterloo, OntarioGoogle Scholar
  56. Smith E. R., R. V. O’Neill, J. D. Wickham, K. B. Jones, L. Jackson, J. V. Kilaru, R. Reuter. 2000. The U.S. EPA’s Regional Vulnerability Assessment Program: a research strategy for 2001–2006. U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North CarolinaGoogle Scholar
  57. Stehman S. V., J. D. Wickham, J. H. Smith, L. Yang. 2003. Thematic accuracy of the 1992 National Land-Cover Data (NLCD) for the eastern United States: statistical methodology and regional results. Remote Sensing Envir 86:500–516CrossRefGoogle Scholar
  58. Strayer D. L., R. E. Beighly, L. C. Thompson, S. Brooks, C. Nilsson, G. Pinay, R. J. Naiman. 2003. Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423CrossRefGoogle Scholar
  59. The Nature Conservancy. 1994. The conservation of biological diversity in the Great Lakes ecosystem: Issues and opportunities. The Nature Conservancy Great Lakes Program, Chicago, IllinoisGoogle Scholar
  60. ter Braak C. J. F., P. Šmilauer. 1998. CANOCO reference manual and user’s guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  61. Timmermans S. T. A., G. E. Craigie. 2003. The Great Lakes Coastal Wetlands Consortium Year-One Pilot Project research indicator activities: A technical report by Bird Studies Canada. Marsh Monitoring Program, Bird Studies CanadaGoogle Scholar
  62. Tran L. T., C. G. Knight, R. V. O’Neill, E. R. Smith, M. O’Connell. 2003. Self-organizing maps for integrated environmental assessment of the mid-Atlantic region. Envir Manage 31:822–825CrossRefGoogle Scholar
  63. Tran L. T., C. G. Knight, R. V. O’Neill, E. R. Smith. 2004. Integrated environmental assessment of the mid-Atlantic region with analytical network process. Envir Monit Assess 94:263–277CrossRefGoogle Scholar
  64. Trebitz A. S., J. C. Brazner, V. J. Brady, R. Axler, D. K. Tanner. Turbidity tolerances of Great Lakes coastal wetlands fishes. (In review)Google Scholar
  65. United States and Canada. 1978. Great Lakes Water Quality Agreement. International Joint Commission, Windsor, OntarioGoogle Scholar
  66. Uzarski D. G., T. M. Burton, J. A. Genet. 2004. Validation and performance of an invertebrate index of biotic integrity for Lakes Huron and Michigan fringing wetlands during a period of lake level decline. Aquatic Ecosyst Health Manage 7:269–288CrossRefGoogle Scholar
  67. Uzarski D. G., T. M. Burton, M. J. Cooper, J. W. Ingram, S. Timmermans. 2005. Fish habitat use within and across wetland classes in coastal wetlands of the five Great Lakes: development of a fish-based Index of Biotic Integrity. J Great Lakes Res 31:171–187CrossRefGoogle Scholar
  68. Vitousek P. M., J. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, G. D. Tilman. 1997. Human alteration of the global nitrogen cycle: causes and consequences. Issues in ecology 1. Special publication, Ecological Society of America, 15 ppGoogle Scholar
  69. Vogelmann J. E., S. M. Howard, L. Yang, C. R. Larson, B. K. Wylie, N. Van Driel. 2001. Completion of the 1990s National Land Cover Data Set for the Conterminous United States from Landsat thematic mapper data and ancillary data sources. Photogram Eng Remote Sensing 67:650–652Google Scholar
  70. Wickham J. D., K. B. Jones, K. H. Riitters, R. V. O’Neill, R. D. Tankersly, E. R. Smith (1999) An integrated environmental assessment of the U.S. mid-Atlantic region. Envir Manage 24:553–560CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nicholas P. Danz
    • 1
    Email author
  • Gerald J. Niemi
    • 1
  • Ronald R. Regal
    • 2
  • Tom Hollenhorst
    • 1
  • Lucinda B. Johnson
    • 1
  • JoAnn M. Hanowski
    • 1
  • Richard P. Axler
    • 1
  • Jan J. H. Ciborowski
    • 3
  • Thomas Hrabik
    • 4
  • Valerie J. Brady
    • 1
  • John R. Kelly
    • 5
  • John A. Morrice
    • 5
  • John C. Brazner
    • 6
  • Robert W. Howe
    • 7
  • Carol A. Johnston
    • 8
  • George E. Host
    • 1
  1. 1.Center for Water and the Environment, Natural Resources Research InstituteUniversity of Minnesota DuluthDuluthUSA
  2. 2.Department of Mathematics and StatisticsUniversity of Minnesota DuluthDuluthUSA
  3. 3.Department of Biological SciencesUniversity of WindsorWindsorCanada
  4. 4.Department of BiologyUniversity of Minnesota DuluthDuluthUSA
  5. 5.Mid-Continent Ecology DivisionU.S. Environmental Protection AgencyDuluthUSA
  6. 6.Inland Waters EcoservicesNova ScotiaCanada
  7. 7.Department of Natural and Applied SciencesUniversity of Wisconsin Green BayGreen BayUSA
  8. 8.Center for Biocomplexity StudiesSouth Dakota State UniversityBrookingsUSA

Personalised recommendations