Environmental Management

, Volume 33, Supplement 1, pp S405–S415 | Cite as

Effects of Data Uncertainties on Estimated Soil Organic Carbon in the Sudan

  • Jean-Nicolas  Poussart
  • Jonas Ardö
  • Lennart Olsson


Estimating the rate of soil carbon sequestration in degraded semiarid agroecosystems is of great interest due to the beneficial effects on soil properties, soil fertility, and the potential atmospheric CO2 mitigation. One of several applied methodologies, biogeochemical modeling, offers possibilities to distribute estimates of soil organic carbon (SOC) over regions, estimate the effects of changes in climate and ecosystem management on SOC, and quantify changes of soil properties over time or space. In this study, the sensitivity of the Century model was assessed in regards to uncertainties for soil texture, natural fire return periods, grazing intensities, and climate. The study area was situated in central Sudan and dominated by subsistence agroecosystems. Uncertainties in the modeling of historical SOC levels, prior to known human interactions, can be reflected in the estimation of the current or future SOC levels, as some soil processes take many years to occur. The relationship between these differences in historical and current SOC levels was calculated. Soil texture, derived from a number of different sources, had the greatest impact on modeled SOC. Overall, data uncertainties for the five parameters tested resulted in SOC variations of up to 160 g C/m2 (1.6 t C/ha) for the estimation of the current level (year 2002), which corresponds to a difference of approximately 80% of the average current level.


Soil organic carbon Sequestration Semiarid Modeling Century Uncertainties Sudan 



We would like to thank the staff at the Natural Resource Ecology Laboratory of Colorado State University, especially Cindy Keough, for providing the Century model and offering support regarding its usage and methods. This work was supported by the Swedish Research Council (621-2001-1806) and the Crafoord Foundation (Ref. No. 00782). The constructive comments from the reviewers significantly improved the manuscript.


  1. 1.
    Adderley, W. P., Simpson, I. A., Lockheart, J., Evershed, R. P., Davidson, D. A. 2000Modeling traditional manuring practices: soil organic matter sustainability of an early Shetland community?Human Ecology28415431CrossRefGoogle Scholar
  2. 2.
    Ahlcrona, E. 1988. The impact of climate and man on land transformation in central Sudan. Lund, PhD thesis. Lund University Press, Lund, 140 pp.Google Scholar
  3. 3.
    Alstad, G. 1991. The influence of Acacia tortilis on soil in arid north-eastern Sudan. University of Bergen, Bergen, Norway, 79 pp.Google Scholar
  4. 4.
    Anonymous. 1999. Estimation and monitoring of carbon sequestration in Gireigikh community based range land project. Final report SUD/93/G31. UNDP, Khartoum, 60 pp.Google Scholar
  5. 5.
    Ardö, J., Olsson, L. 2003aAssessment of soil organic carbon in semi-arid Sudan using GIS and the Century model.Journal of Arid Environment54633651CrossRefGoogle Scholar
  6. 6.
    Ardö, J., and L. Olsson. 2003b. Soil carbon sequestration in traditional farming in Sudanese drylands. Environmental Management (in press).Google Scholar
  7. 7.
    Ardö, J., Barkman, A., Arvidsson, P. 2000Critical levels of SO2 in northern Czech Republic—uncertainties and relationship to regional forest decline.Geographical and Environmental Modelling4131161Google Scholar
  8. 8.
    Bationo, A., Buerkert, A. 2001Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa.Nutrient Cycling in Agroecosystem61131142CrossRefGoogle Scholar
  9. 9.
    Bromberg, J. G., McKeown, R., Knapp, L., Kittel, T. G. F., Ojima, D. S., Schimel, D. S. 1996Integrating GIS and the Century model to manage and analyze data.GIS and Environmental Modeling: Progress and Research Issues:00429431Google Scholar
  10. 10.
    Brown, S., and M. Hall 2002. Development and comparison of approaches for establishing baseline scenarios for land-use change and forestry projects. Page 41 in Proceedings of USDA symposium on natural resource management to offset greenhouse gas emissions. Raleigh, North Carolina.Google Scholar
  11. 11.
    Burke, I. C., Yonker, C. M., Parton, W. J., Cole, C. V., Flach, K., Schimel, D. S. 1989Texture, climate, and cultivation effects on soil organic matter context in U.S. grassland soils.Soil Science Society of America Journal53800805Google Scholar
  12. 12.
    Craig, G. M. 1991The agriculture of the SudanOxford University PressOxford450Google Scholar
  13. 13.
    Davies, H. R. J. 1985Natural resources and rural development in arid lands: case studies from SudanUnited Nations University PressTokyo94Google Scholar
  14. 14.
    Devendra, C., McLeroy, G. B. 1982Goat and sheep production in the tropicsLongman Group.271Google Scholar
  15. 15.
    DOXIADIS1964Land and water use survey in Kordofan province of the Republic of the Sudan. DOX-SUD-A25Doxiadis AssociatesAthens, Greece232Google Scholar
  16. 16.
    Elagib, N. A., Mansell, M. G. 2000Recent trends and anomalies in mean seasonal and annual temperatures over Sudan.Journal of Arid Environments45263288CrossRefGoogle Scholar
  17. 17.
    Falloon, P. D., Smith, P., Smith, J. U., Szabo, J., Coleman, K., Marshall, S. 1998Regional estimates of carbon sequestration potential: linking the Rothamsted carbon model to GIS databases.Biology and Fertility of soils27236241CrossRefGoogle Scholar
  18. 18.
    Falloon, P. D., Smith, P., Szabo, J., Pásztor, L. 2002Comparision of approaches for estimating carbon sequestration at the regional scale.Soil Use and Management18164174CrossRefGoogle Scholar
  19. 19.
    FAO-UNESCO. 1995. The digital soil map of the world (DSMW). Paris, FAO-UNESCO.Google Scholar
  20. 20.
    Global Soil Data Task (2000). Global Soil Data Products CD-ROM (IGBP-DIS). Available online at http://www.daac.ornl.gov/ from the ORNL Distributed Active Archive Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, International Geosphere-Biosphere Programme—Data and Information Services.Google Scholar
  21. 21.
    Haaland, G. 1991

    Production systems in western Sudan

    Craig, G. M. eds. The agriculture of the Sudan.Oxford University PressOxford230251
    Google Scholar
  22. 22.
    Hulme, M. 2001Climatic perspectives on Sahelian desiccation: 1973–1998.Global Environmental Change111929Google Scholar
  23. 23.
    Humphreys, L. R. 1978Tropical pastures and fodder cropsLongman Group.135Google Scholar
  24. 24.
    IPCC2000Land use, land-use change, and forestryCambridge University PressCambridge377Google Scholar
  25. 25.
    Jewitt, T. N., and J. S. Manton 1954. Soil exhaustion in the Goz sands of the Sudan. Page 413–416 in Proceedings of Congres international de la science du sol, Leopodville.Google Scholar
  26. 26.
    Khogali, M. M. 1991Famine, desertification and vulnerable populations: the case of Umm Ruwaba District, Kordofan region, Sudan.Ambio20204206PubMedGoogle Scholar
  27. 27.
    Kyoto Protocol. 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. FCCC/CP/1997/7/Add.1, Decision 1/CP.3, Annex, 7.Google Scholar
  28. 28.
    Lal, R. 2001Potential of desertification control to sequester carbon and mitigate the greenhouse effect.Climatic Change513572CrossRefGoogle Scholar
  29. 29.
    Lal, R. 2002Soil carbon dynamics in cropland and rangeland.Environmental Pollution116353362CrossRefPubMedGoogle Scholar
  30. 30.
    McDowell, N. 2002Developing countries to gain from carbon-trading fund.Nature4204CrossRefGoogle Scholar
  31. 31.
    Metherell, A. K., L. A. Harding, C. V. Cole, and W. J. Parton. 1993. Century soil organic matter model environment, technical documentation, agroecosystem version 4.0. Technical Report No. 4, United States Department of Agriculture, Agricultiral Research Service, Great Plains System Research Unit, 250 pp.Google Scholar
  32. 32.
    Mitchell, S. W., Csillag, F. 2001Assessing the stability and uncertainty of predicted vegetation growth under climate variability: northern mixed grass prairie.Ecological Modelling00101121CrossRefGoogle Scholar
  33. 33.
    Nicholson, S. E. 2000The nature of rainfall variability over Africa on the time scales of decades to millenia.Global and Planetrary Change26137158CrossRefGoogle Scholar
  34. 34.
    Ojima, D. S., Parton, W. J., Schimel, D. S., Kittel, T. G. F., Scurlock, J. M. O. 1993Modeling the effects of climatic and CO2 changes on grassland storage of soil C.Water, Air, and Soil Pollution70643657Google Scholar
  35. 35.
    Olsson, K. 1985a. Remote sensing for fuelwood resources and land degradation studies in Kordofan, The Sudan. PhD thesis. Lund University, Lund, 182 pp.Google Scholar
  36. 36.
    Olsson, K., Rapp, A. 1991Dryland degradation in central Sudan and conservation for survival.Ambio20192195Google Scholar
  37. 37.
    Olsson, L. 1985b. An integrated study of desertification. PhD thesis. Lund University, Lund, 170 pp.Google Scholar
  38. 38.
    Olsson, L., Ardö, J. 2002Soil carbon sequestration in degraded semiarid agro-ecosystems—perils and potentials.Ambio31471477PubMedGoogle Scholar
  39. 39.
    Pacheco, R., and H. A. Dawoud. 1976. Exploratory soil survey of north and south Kordofan. Soil Survey Report 81. UNDP, Khartoum, 105 pp.Google Scholar
  40. 40.
    Parton, W. J., Schimel, D. S., Cole, C. V., Ojima, D. S. 1987Analysis of factors controlling soil organic levels of grasslands in the Great Plains.Soil Science Society of America Journal5111731179Google Scholar
  41. 41.
    Parton, W. J., Stewart, J. W. B., Cole, C. V. 1988Dynamics of C, N, P and S in grasslands soils: a model.Biogeochemistry5109131Google Scholar
  42. 42.
    Parton, W. J., J. M. O. Scurlock, D. S. Ojima, T. G. Gilmanov, R. J. Scholes, D. S. Schimel, T. Kirchner, J. C. Menaut, T. Seastedt, E. Moya, G., A. Kamnalrut, and J. I. Kinyamario. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles 7:785–809.Google Scholar
  43. 43.
    Parton, W. J., Ojima, D. S., Schimel, D. S. 1994Environmental change in grasslands: assessment using models.Climatic Change28111114Google Scholar
  44. 44.
    Parton, W. J., Coughenour, M. B., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., Schimel, D. S., Kirchner, T. B., Menaut, J.-C., Seastedt, T. R., Garcia Moya, E., Kamnalruth, A., Kinyamario, J. I., Hall, D. O. 1996

    Global grassland ecosystem modelling: development and test of ecosystem models for grassland systems. Page 229–279

    Breymeyer, A. I.Hall, D. O.Mellilio, J. M.ÅAgren, G. I. eds. Global change: effects on coniferous forests and grasslands.John Wiley & SonsNew York
    Google Scholar
  45. 45.
    Paustian, K., Levine, E., Post, W. M., Ryzhova, I. M. 1997The use of models to integrate information and understanding of soil C at the regional scale.Geoderma79227260CrossRefGoogle Scholar
  46. 46.
    Pennock, D. J., Frick, A. H. 2001The role of field studies in landscape-scale applications of process models: an example of soil redistribution and soil organic carbon modeling using Century.Soil and Tillage Research58183191CrossRefGoogle Scholar
  47. 47.
    Poussart, J.-N. 2002. Verification of Soil Carbon Sequestration—uncertainties of Assessment Methods. MSc thesis. Lund University, Lund, 73 pp.Google Scholar
  48. 48.
    Robert, M. 2001. Soil carbon sequestration for improved land management. World Soil Resources Reports 96, Food and Agriculture Organization of the United Nation (FAO), Rome, 60 pp.Google Scholar
  49. 49.
    Sanchez, P. A. 2002Soil fertility and hunger in Africa.Science29520192020CrossRefPubMedGoogle Scholar
  50. 50.
    Scholes, R. J., Walker, B. H. 1993An African savanna. Synthesis of the Nylsvley studyCambridge University PressCambridge306Google Scholar
  51. 51.
    Sitch, S. 2000. The role of vegetation dynamics in the control of atmospheric CO2 content. PhD thesis. Lund, Lund University, 29 pp.Google Scholar
  52. 52.
    Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., Coleman, K., Frankoe, U., Frolking, S., Jenkinson, D. S., Jensen, L. S., Kelly, R. H., Klein-Gunnewiek, H., Komarov, A. S., Li, C., Molina, J. A. E., Mueller, T., Parton, W. J., Thornley, J. H. M., Whitmore, A. P. 1997A comparision of the performance of nine soil organic matter models using datasets from seven long-term experiments.Geoderma81153225CrossRefGoogle Scholar
  53. 53.
    Stephenne, N., Lambin, E. F. 2001A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU).Agriculture, Ecosystems and Environment85145161Google Scholar
  54. 54.
    Stern, M. 1985. Census from Heaven? PhD-thesis. Lund University, Lund 128 pp.Google Scholar
  55. 55.
    Tschakert, P. 2001. Human dimensions of carbon sequestration: A political ecology approach to soil fertility management and desertification control in the Old Peanut Basin of Senegal. Arid Lands Newsletter May–June. Google Scholar
  56. 56.
    UNEP1992World atlas of desertificationUNEPNairobi, Kenya87Google Scholar
  57. 57.
    Warren, A. 1970Dune trends and their implications in the central Sudan.Zeitshrift fur Geomorphologie Supplementband10154180PubMedGoogle Scholar
  58. 58.
    Warren, A., Sud, Y. C., Rozanov, B. 1996The future of deserts.Journal of Arid Environments327589CrossRefGoogle Scholar
  59. 59.
    Zaroug, M. G. 2000. Country Pasture/Forage Resouce Profiles - Sudan. Grassland and Pasture Crops, Plant Production and Protection Division, Food and Agriculture Organization of the United Nations, 50 pp.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Jean-Nicolas  Poussart
    • 1
  • Jonas Ardö
    • 1
  • Lennart Olsson
    • 2
  1. 1.Department of Physical Geography and Ecosystem AnalysisLund University Sölvegatan 12, S-223 62, LundSweden
  2. 2.Center for Environmental StudiesLund University, Box 170, S-221 00, LundSweden

Personalised recommendations