Environmental Management

, Volume 33, Supplement 1, pp S388–S404 | Cite as

Possible Implications of Increased Carbon Dioxide Levels and Climate Change for Desert Ecosystems

  • E. Lioubimtseva
  • J. M. Adams
Article

Abstract

Despite the considerable progress achieved during recent years in quantifying and modeling climatic and ecological processes caused by increasing concentrations of greenhouse gases in the atmosphere, there are still major uncertainties regarding the potential effects of increasing concentrations of either CO2 (carbon dioxide) or future climate change in arid ecosystems. General Circulation Models predict varying patterns of moister or drier conditions in deserts for the next century, but the results of climatic and ecosystem modeling in relation to deserts in a future “greenhouse effect” climate are complex and contradictory. Nevertheless, if deserts do respond more dramatically to global temperature change, as they did during the Holocene and, especially the last interglacial era (130,000 years ago), they might act as globally significant sinks of carbon into soils and vegetation. Some growth chamber experiments have indicated that increased CO2 will significantly affect desert shrubs, whereas other chamber and field experiments suggest that rising levels of atmospheric CO2 may not dramatically affect desert ecosystems, although certain individual species may be strongly favored. It is difficult to make a firm statement whether there are any valid analogs between the climate changes of the past and future climate change induced by greenhouse gases.

Keywords

Carbon dioxide Desert Ecosystem Precipitation Fertilization Biomass 

References

  1. 1.
    Abell, P., Hoelzmann, P., Pachur, H.-J. 1996Stable isotope ratios of gastropod shells and carbonate sediments of NW Sudan as palaeoclimatic indicatorsPalaeoecology of Africa243352Google Scholar
  2. 2.
    Adams, J. M., Faure, H. 1998A new estimate of changing carbon storage on land since the last glacial maximum, based on global land ecosystem reconstructionGlobal and Planetary Change16324CrossRefGoogle Scholar
  3. 3.
    Adams, J. M., Lioubimtseva, E. 2002

    Some key uncertainties in the global distribution of soil and peat carbon.

    Kimble, J. M.Lal, R.Follett, R. F. eds. Agricultural practices and policies for carbon sequestration in soilCRC Press Lewis PublishersBoca Raton, Florida459469
    Google Scholar
  4. 4.
    Adams, J. M., Post, W. M. 1999An estimate of the changing size of the caliche carbonate reservoir on land since the Last Glacial MaximumGlobal and Planetary Change20243256CrossRefGoogle Scholar
  5. 5.
    Adams, J. M., Maslin, M., Thomas, E. 1999Sudden climate transitions during the QuaternaryProgress in Physical Geography23136CrossRefGoogle Scholar
  6. 6.
    Ajtay, G. L., Ketner, P., Duvigneaud, P. 1979

    Terrestrial primary production and phytomass.

    Bolin, B.Degens, E. T.Kempe, S.Ketner, P. eds. The global carbon cycle. SCOPE 13Gresham PressSurrey129182
    Google Scholar
  7. 7.
    Bachelet, D., Neilson, R. P., Lenihan, J. M., Drapek, R. 2001Climatic change effects on vegetation distribution and carbon budget in the United StatesEcosystems4164185CrossRefGoogle Scholar
  8. 8.
    Barnola, J. M., Pimienta, P., Raynaud, D., Korotkevich, Y. S. 1991CO2–climate relationship as deduced from the Vostok ice coreTellus438390CrossRefGoogle Scholar
  9. 9.
    Batjes, N. H., Sombroeck, W. G. 1997Possibilities for carbon sequestration in tropical and subtropical soilsGlobal Change Biology3161173CrossRefGoogle Scholar
  10. 10.
    BassiriRad, H., Reynolds, J. F., Virginia, R. A., Brunelle, M. H. .Growth and root NO3 and PO43– uptake capacity of three desert species in response to atmospheric CO2 enrichmentAustralian Journal of Plant Physiology24353358Google Scholar
  11. 11.
    Bazazz, F. A. 1990The response of natural ecosystems to the rising global CO2 levels.Annual Review of Ecology and Systematics21167196CrossRefGoogle Scholar
  12. 12.
    Bazzaz, F. A., Garbutt, K. 1988The Response of annuals in competitive neighborhoods: Effects of elevated CO2.Ecology69937946Google Scholar
  13. 13.
    Bazilevich N. I. 1995. Biomass and biologic production of vegetation formations of the former USSR (Biomassa i bioproductivnost rastitelnih formatsij. Nauka, Moscow (in Russian).Google Scholar
  14. 14.
    Belnap, J. 1993Recovery rates of cryptobiotic crusts: Inoculant use and assessment methodsGreat Basin Naturalist538995Google Scholar
  15. 15.
    Belnap, J. 1995Surface disturbances: Their role in accelerating desertificationEnvironmental Monitoring and Assessment373957Google Scholar
  16. 16.
    Bonnefille, R., Roeland, J. C., Guiot, J. 1990Temperature and rainfall estimates for the past 40,000 years in Equatorial AfricaNature346347349CrossRefGoogle Scholar
  17. 17.
    Chuulun T., Ojima D. Dashordrj J. 1999. Land use change on the Mongolian steppes, Page 73 in Open meeting on the human dimensions of global environmental change research community, Shonan Village, Kanagava, Japan,24–26 June.Google Scholar
  18. 18.
    Ciais, P., Tans, P. P., Troiler, M., White, J. W. C., Francey, R. J. 1995A large northern hemispheric terrestrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2Science26910981102Google Scholar
  19. 19.
    Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelzmann, P., Pachur, H. -J. 1999Simulation of an abrupt change in Saharan vegetation in the mid-HoloceneGeophysical Research Letters2620372040CrossRefGoogle Scholar
  20. 20.
    Coude-Goussen G. 1991. Les poussieres Sahariennes (cycle sedimentaire et place dans les environnements desertiques). Paris, Universites francophones, 480 pp. Google Scholar
  21. 21.
    Dregne, H. E., Nan-Ting, Chou 1992

    Global desertification dimensions and costs.

    Dregne, H. E. eds. Degradation and restoration of arid landsTexas Technical UniversityLubbock, Texas
    Google Scholar
  22. 22.
    Gladishev, A. I., Rodin, L. E. 1977Structure and distribution of phytomass of riverbed forest communities along the middle stretch of the River Amu-Daria (TurkmenianSSR).Botanic Journal (Botanicheskij Zurnal)62314(in Russian).Google Scholar
  23. 23.
    Grünzweig, J., Körner, Ch. 2000Growth and reproductive responses to elevated CO2 in wild cereals of the northern Negev of IsraelGlobal Change Biology6631638CrossRefGoogle Scholar
  24. 24.
    Guieu C. Loye-Pilot M. -D. Ridame C. Thomas C. 2002. Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research, 107: No D15 10.1029/2001JD000582. Google Scholar
  25. 25.
    Hamerlynck, E. P., Huxman, T. E., Nowak, R. S., Redar, S., Loik, M. E., Jordan, D. N., Zitzer, S. F., Coleman, J. S., Seeman, J. R., Smith, S. D. 2000Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE FacilityJournal of Arid Environments44425436CrossRefGoogle Scholar
  26. 26.
    Hulme, M. 1999Global warming.Progress in Physical Geography23303311CrossRefGoogle Scholar
  27. 27.
    Hulme, M., Mitchell, J. F. B., Ingram, W., Johns, T. C., Lowe, J. A., New, M. G., Viner, D. 2000Climate change scenarios for global impacts studies.Global Environmental Change9S3S19CrossRefGoogle Scholar
  28. 28.
    Hulme, M., Doherty, R., Ngara, T., New, M., Lister, D. 2001African climate change: 1900–2100.Climate Research17145168Google Scholar
  29. 29.
    Hunt, H. W., Elliot, E. T. 1996Responses of a C3 and C4 perennial grass steppe to elevated CO2.Global Change Biology23547Google Scholar
  30. 30.
    Huxman, T. E., Smith, S. D. 2001Photosynthesis in an invasive grass and native forb at elevated CO2 during an El Niño year in the Mojave DesertOecologia128193201CrossRefGoogle Scholar
  31. 31.
    Huxman, E. P., Nowak, R. S., Redar, S., Loik, M. E., Jordan, D. N., Zitzer, S. F., Coleman, J. S., Seeman, J. R., Smith, S. D. 2000Photosynthetic responses of Larrea tridentata to a step-increase in atmospheric CO2 at the Nevada Desert FACE FacilityJournal of Arid Environments44425436CrossRefGoogle Scholar
  32. 32.
    IPCC. 1995. Climate change: The science of climate change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. in J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell (eds.). Cambridge University Press, Cambridge.Google Scholar
  33. 33.
    IPCC. 2001. Climate change: The scientific basis contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). in J. T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P. J. van der Linden, D. Xiaosu (eds.). Cambridge University Press, Cambridge.Google Scholar
  34. 34.
    Kattenberg, A., Giorgi, F., Grassl, H., Meehl, G.A., Mitchell, G. F. B., Stouffler, R. J., Takioka, T., Weaver, A. J., Wigley, T. M. L. 1996

    Climate models—Projections of future climates.

    Houghton, J. T.Meira Filho, L. G.Callander, B. A.Harris, N.Kattenberg, A.Maskell, K. eds. Climate change 1995: The science of climate change. Contribution to Working Group 1 to the Second Assessment Report of the Intergovernmental Panel on Climatic ChangeCambridge University PressCambridge285357
    Google Scholar
  35. 35.
    Keeling, C. D., Chin, J. F. S., Whorf, T. P. 1996Increased activity of northern vegetation inferred from atmospheric CO2 measurements.Nature382146149CrossRefGoogle Scholar
  36. 36.
    Kharin N. G., Tateishi R., Harahshesh H. 1999. Degradation of the drylands of Asia. Center for Environmental Remote Sensing (CEReS), Chiba University.Google Scholar
  37. 37.
    Korner, Ch. 1995Towards a better experimental basis for upscaling plant responses to elevated CO2 and climate warming.Plant Cell and Environment1811011110Google Scholar
  38. 38.
    Kotwicky, V., Allan, R. 1998La Niña de Australia—Contemporary and palaeohydrology of Lake EyrePalaeogeography, Palaeoclimatology, Palaeoecology144265280Google Scholar
  39. 39.
    Lal, R., Hassan, H. M., Dumanski, J. 1999

    Desertification control to sequester carbon and mitigate the greenhouse effect.

    Rosenberg, N.Izaurralde, R. C. eds. Carbon sequestration in soils: Science, monitoring and beyondMalone Battelle PressColumbus, Ohio
    Google Scholar
  40. 40.
    Lal, R. 2000

    Soil erosion and carbon dynamics on grazing lands.

    Follett, R. F.Kimble, J. M.Lal, R. eds. The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effectCRC/Lewis PublishersBoca Raton, Florida231247
    Google Scholar
  41. 41.
    Le Houérou, H. N. 1989The grazing land ecosystems of the African SahelSpringer- VerlagHeidelbergGoogle Scholar
  42. 42.
    Lioubimtseva, E. 1999

    Impacts of climatic changes on carbon storage variations in African and Asian deserts.

    Lal, R.Kimble, J.Follet, R.Stewart, B. eds. Soil processes and the carbon cycleCRC/Lewis PublishersBoca Raton, Florida561576
    Google Scholar
  43. 43.
    Lioubimtseva, E., Adams, J. M. 2002

    Carbon content in desert and semidesert soils in Central Asia.

    Kimble, J. M.Lal, R.Follett, R. F. eds. Agricultural practices and policies for carbon sequestration in soilCRC/ Lewis PublishersBoca Raton, Florida409456
    Google Scholar
  44. 44.
    Lioubimtseva, E., Simon, B., Faure, H., Adams, J. M. 1998Impacts of climatic change on carbon storage in the Sahara–Gobi desert belt since the Late Glacial Maximum.Global and Planetary Change16–1795105CrossRefGoogle Scholar
  45. 45.
    Liu, T., Guo, Z., Liou, J., Han, J., Ding, Z., Gu, Z., Wu, N. 1995Variations of Eastern Asian monsoon over the last climatic cycle.Bulletin Societe Geologigue France166221230Google Scholar
  46. 46.
    Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore III, B., Vorosmarty, C. J., Schloss, A. L. 1993Global climatic change and terrestrial net primary production.Nature363234240CrossRefGoogle Scholar
  47. 47.
    Miller,  R., Tegen, I. 1998Climate response to mineral dust aerosols.Journal of Climate1132473267CrossRefGoogle Scholar
  48. 48.
    Mudelsee, M. 2001The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka.Quaternary Science Reviews20583589CrossRefGoogle Scholar
  49. 49.
    Nanson, G. C., Price, D. M., Short, S. A. 1992Wetting and drying of Australia over the past 300 ka.Geology20791794CrossRefGoogle Scholar
  50. 50.
    Nechaeva, N. T. (ed). 1984. Resursy biosphery pustin Srednei Azii i Kazakhstana (Biosphere resources of deserts in Central Asia and Kazakhstan). Nauka, Moscow (in Russian).Google Scholar
  51. 51.
    New, M., Hulme, M., Jones, P. D. Z 2000Representing twentieth century space-time climate variability. Part 2: Development of 1901–96 monthly grids of terrestrial surface climate.Journal of Climate1322172238CrossRefGoogle Scholar
  52. 52.
    Oberlander, T. M. 1994

    Global deserts: a geomorphic comparison.

    Abrahams, A. D.Parsons, A. J. eds. Geomorphology of desert environmentsChapman & HallLondon1335
    Google Scholar
  53. 53.
    Olson, J. S., Watts, J. A., Allison, L. J. 1985Major world ecosystem complexes ranked by carbon in live vegetation. NDP017.Carbon Dioxide Information Center, Oak Ridge National LaboratoryOak Ridge, TennesseeGoogle Scholar
  54. 54.
    Olson, J. S., Watts, J. A., Allison, L. J. 1983Carbon in live vegetation of major world ecosystems. ORNL-5862, ESD Pub. No. 1997.Oak Ridge National LaboratoryOak Ridge, TennesseeGoogle Scholar
  55. 55.
    Owensby, C. E. 1993Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2.Ecological Applications3644653Google Scholar
  56. 56.
    Petit-Maire, N., Guo, Z. 1996Mise en evidence de variations climatique holocenes rapides, en phase dans les deserts actuels de Chine et du Nord de l’Afrique.Science de la Terre et des Planetes322847851Google Scholar
  57. 57.
    Petit-Maire, N., Guo, Z. T. 1998

    Mid-Holocene climatic change and man in the present-day Sahara desert.

    Alsharhan, A. S.Glennie, K. W.Whittle, G. L.Kendall, C. G. St. C. eds. Quaternary deserts and climatic changeA.A. BalkemaRotterdam351356
    Google Scholar
  58. 58.
    Poorter, H., Perez-Soba, M. 2001Growth response of plants to elevated CO2 under sub-optimal environmental conditions.Oecologia129120CrossRefGoogle Scholar
  59. 59.
    Post, W. M., Emmanuel, W. R., Zinke, P. J., Stagenberg, A. G. 1982Soil carbon pools and world life zones.Nature3464851Google Scholar
  60. 60.
    Rognon, P. 1987Late quaternary climatic reconstruction for the Maghreb (North Africa).Palaeogeography, Palaeoclimatology, Palaeoecology581134Google Scholar
  61. 61.
    Rustamov, I. G. 1994

    Vegetation of the Deserts of Turkmenistan.

    Fet, V.Atamuradov, K. I. eds. Biogeography and ecology of Turkmenistan.Kluwer AcademicAmsterdam77104
    Google Scholar
  62. 62.
    Sanlaville, P. 1992. Sciences de la terre et archéologie: L’évolution de la Basse Mésopotamie à l’Holocène.in Miskovsky, J. C. Les applications de la géologie à la connaissance de l’environnement de l’homme. Bulletin de la Société Géologique de France 160: 11–18. Google Scholar
  63. 63.
    Schlesinger, W. H. 1990Evidence from chronosequence studies for a low carbon storage potential of soils.Nature348232234CrossRefGoogle Scholar
  64. 64.
    Schlesinger, W. H. 1995

    An overview of the carbon cycle.

    Lal, R.Kimble, J.Levine, E.Stewart, B. A. eds. Soils and global change.CRC/Lewis PublishersBoca Raton, Florida
    Google Scholar
  65. 65.
    Smith, S. D., Huxman, T. F., Zitzer, S. F., Charlet, T. N., Housman, D. C., Coleman, J. S., Fenstermaker, L. K., Seemann, J. R., Nowak, R. S. 2000Elevated CO2 increases productivity and invasive species success in an arid ecosystem.Nature4087982CrossRefPubMedGoogle Scholar
  66. 66.
    Street-Perrot, F. A., Mitchell, J. F. B., Marchand, D. S., Brunner, J. S. 1990Milankovitch and albedo forcing of the tropical monsoon: a comparison of geological evidence and numerical simulations for 9000 yrs. BP.Transactions of the Royal Society of Edinburg (Earth Science)81407427Google Scholar
  67. 67.
    Tarasov, 1992: Evlutsia klimata i landshaftov Severnogo i centralnogo Kazakhstana (Climatic and landscape evolution of northern and central Kazakhstan), Ph.D. thesis, Moscow State University Moscow, 120 pp. (in Russian). Google Scholar
  68. 68.
    Thompson, R. S., Whitlock, C., Bartlein, P. J., Harrison, S. P., Spaulding, W. G. 1993

    Climatic changes in the western United States since 18,000 yr B.P.

    Wright, H.E.Kutzbach III, J.Ruddiman, F.A.Street- Perrott, F.A.Bartlein, P.H. eds. Global climates since the Last Glacial Maximum.University of Minnesota PressMinneapolis, Minnesota468513
    Google Scholar
  69. 69.
    UNCCD. 2001. Assessment of the status of land degradation in arid, semi-arid and dry sub-humid areas; Land degradation assessment in drylands and millennium ecosystem assessment. United Nations Convention to Combat Desertification. ICCD/COP (5), Geneva.Google Scholar
  70. 70.
    UNEP. 1992. World atlas of desertification. N. Middleton and D. Thomas (eds.).Edward Arnold for United Nations Environmental Program, London, 69 pp.Google Scholar
  71. 71.
    UNEP. 1997. World atlas of desertification, 2nd ed. N. Middleton and D. Thomas (eds.). Oxford University Press for United Nations Environmental Program, Oxford, 82 pp.Google Scholar
  72. 72.
    VEMAP Members (Vegetation/Ecosystem Modeling and Analysis Project).1995Vegetation/Ecosystem Modeling and Analysis Project: Comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem resoponses to climate change and CO2 doubling.Global Biogem. Cycles9407437Google Scholar
  73. 73.
    Walter, H., Box, E. O. 1983

    Temperate deserts and semi-deserts.

    West, I.Neil, E. eds. Ecosystems of the world, Volume 5.ElsevierAmsterdam1159
    Google Scholar
  74. 74.
    Webb, R. H., Wilshire, H.G. 1983Environmental effects of off-road vehicles: Impacts and management in arid regions.Springer-VerlagNew York, New YorkGoogle Scholar
  75. 75.
    Whitford, W. 2002Ecology of desert systems.Academic PressLondon343 ppGoogle Scholar
  76. 76.
    Yan, Z. W., Petit-Maire, N. 1994The last 140 ka in the Afro-Asian climatic transitional zone.Palaeogeography, Palaeoclimatology, Palaeoecology110217233Google Scholar
  77. 77.
    Zender C. S. Radiative Forcing by mineral dust, 1999. in Proceedings of the Workshop on Mineral Dust, 9–11 June 1999, Boulder, Colorado.Google Scholar
  78. 78.
    Zeng, N., Neelin, J. D., Lau, K. -M., Tucker, J. 1999 Enhancement of interdecadal climate variability in the Sahel by vegetation interaction.Science28615371540CrossRefPubMedGoogle Scholar
  79. 79.
    Zinke, P. J., Stangenburger, A. G., Post, W. M, Emmanuel, W. R., Olson, J. S. 1984Worldwide organic soil carbon and nitrogen data. Environmental Sciences Division, Publication No.2212.Oak Ridge National Lab/US Department of EnergyOak Ridge, TennesseeGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • E. Lioubimtseva
    • 1
  • J. M. Adams
    • 2
  1. 1.Geography and Planning DepartmentGrand Valley State University, Allendale, Michigan 49401USA
  2. 2.Earth and Environmental Sciences DepartmentWesleyan University, Middletown, Connecticut 06459USA

Personalised recommendations