Environmental Management

, Volume 33, Supplement 1, pp S176–S186 | Cite as

Modeling Impacts of Management on Carbon Sequestration and Trace Gas Emissions in Forested Wetland Ecosystems

  • Changsheng Li
  • Jianbo Cui
  • Ge Sun
  • Carl Trettin


A process-based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices (e.g., forest harvest, chopping, burning, water management, fertilization, and tree planting), inclusion of detailed anaerobic biogeochemical processes for wetland soils, and utilization of hydrological models for quantifying water table variations. A 150-year management scenario consisting of three stages of wetland forest, deforestation/drainage, and wetland restoration was simulated with the Wetland-DNDC for two wetlands in Minnesota and Florida, USA. The impacts of the management scenario on carbon ecosystem exchange, methane emission, and nitrous oxide emission were quantified and assessed. The results suggested that: (1) the same management scenario produced very different consequences on global warming due to the contrast climate conditions; and (2) methane and nitrous oxide fluxes played nonnegligible roles in mitigation in comparison with carbon sequestration.


Forest management Wetland C sequestration Trace gas emissions Process-based model 



This study is supported by the Southern Global Change Program, USDA Forest Service, and NASA’s Terrestrial Ecosystems and Global Change Program.


  1. 1.
    Anderson, I. C., Levine, J. S. 1986Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers.Applied and Environmental Microbiology51938945Google Scholar
  2. 2.
    Bader, F. G. 1978Analysis of double-substrate limited growth.Biotechnology and Bioengineering20183202PubMedGoogle Scholar
  3. 3.
    Birdsey, R., Heath, L. S. 2001Forest inventory data, models, and assumptions for monitoring carbon flux.Lal, R. eds. Soil carbon sequestration and the greenhouse effectSoil Science Society of AmericaMadison, WI137154Google Scholar
  4. 4.
    Bollmann, A., Conrad, R. 1998Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils.Global Change Biology4387396CrossRefGoogle Scholar
  5. 5.
    Holland, E. A., Schimel, D. S. 1994Ecosystem and physiological controls over methane production in northern wetlands.Journal of Geophysical Research9915631571CrossRefGoogle Scholar
  6. 6.
    IPCC (Intergovernmental Panel on Climate Change). 1997. Guidelines for national greenhouse gas inventories. OECD/ODCE, ParisGoogle Scholar
  7. 7.
    Koussis, A. D., M. Sophocleous, L. Bian, and S. Zou. 1994. Lower Republican River basin: stream–aquifer study. Technical Report. University of Kansas Google Scholar
  8. 8.
    Li, C. 2000Modeling trace gas emissions from agricultural ecosystems.Nutrient Cycling in Agroecosystems58259276CrossRefGoogle Scholar
  9. 9.
    Li, C., Frolking, S., Frolking, T. A. 1992A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity.Journal of Geophysical Research9797599776Google Scholar
  10. 10.
    Li, C., Aber, J., Stange, F., Butterbach-Bahl, K., Papen, H. 2000A process-oriented model of N2O and NO emissions from forest soils: 1, Model development.Journal of Geophysical Research10543694384CrossRefGoogle Scholar
  11. 11.
    Minkkinen, K., Laine, J. 1998Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland.Canadian Journal of Forest Research2812671275CrossRefGoogle Scholar
  12. 12.
    Neitschm, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams, and K. W. King. 2002. Soil and water assessment tool theoretical documentation, version 2000. TWRI Report TR-191. Texas Water Resources Institute, College Station, Temple, TexasGoogle Scholar
  13. 13.
    Paul, E. A., Clark, F. E. 1989Soil microbiology and biochemistry, 2nd ed.Academic PressSan Diego166 ppGoogle Scholar
  14. 14.
    Sass, R. L., Fisher, F. M., Turner, F. T., Jund, M. F. 1991Methane emission from rice fields as influenced by solar radiation, temperature, and straw incorporation.Global Biogeochemical Cycles5335350Google Scholar
  15. 15.
    Srinivasan, R., Arnold, J., Rosenthal, W., and Muttiah, R. S. 1993. Hydrologic modeling of Texas Gulf Basin using GIS. Proceedings, second international conference on integrating GIS and environmental modeling, Breckenridge, Colorado Google Scholar
  16. 16.
    Stange, F., Butterbach-Bahl, K., Papen, H., Zechmeister-Boltenstern, S., Li, C., Aber, J. 2000A process-oriented model of N2O and NO emission from forest soils: 2, Sensitivity analysis and validation.Journal of Geophysical Research10543854398CrossRefGoogle Scholar
  17. 17.
    Stumm, W., Morgan, J. J. 1981Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, 2nd ed.John Wiley & SonsNew York418503Google Scholar
  18. 18.
    Sun, G., Riekerk, H., Comerford, N. B. 1998Modeling the hydrologic impacts of forest harvesting on Florida flatwoods.Journal of the American Water Resources Association34843854Google Scholar
  19. 19.
    Terry, R. E., Tate, R. L. III, Duxbury, J. M. 1981Nitrous oxide emissions from drained, cultivated organic soils of South Florida.Journal of the Air Pollution Control Association3111731176Google Scholar
  20. 20.
    Trettin, C. C., Jurgensen, M. F. 2003 (in press)Carbon cycling in wetland forest soils.Kimble, J.Birdsie, R.Lal, R. eds. Carbon sequestration in US forests.Lewis PublishersBoca Raton, FloridaGoogle Scholar
  21. 21.
    Trettin, C. C., B. Song, M. F. Jurgensen, and Li, C. 2001. Existing soil carbon models do not apply to forested wetlands. GTR SRS-46. USDA Forest Service, Washington, DC Google Scholar
  22. 22.
    Wassmann, R., Wang, M. X., Shangguan, X. J., Xie, X. L., Shen, R. X., Wang, Y. S., Papen, H., Rennenberg, H., Seiler, W. 1993First records of a field experiment on fertilizer effects on methane emission from rice fields in Hunan-province (PR China).Geophysics Research Letters2020712074Google Scholar
  23. 23.
    Yagi, K., Manami, K. 1990Effect of organic matter application on methane emission from some Japanese paddy fields.Soil Science and Plant Nutrition36599610Google Scholar
  24. 24.
    Zhang, Y., Li, C. Trettin, C. C. Li, H., and Sun, G. 2002. An integrated model of soil, hydrology and vegetation for carbon dynamics in wetland ecosystems, Global Biogeochemical Cycles. Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Changsheng Li
    • 1
  • Jianbo Cui
    • 1
  • Ge Sun
    • 2
  • Carl Trettin
    • 3
  1. 1.Complex Systems Research CenterInstitute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824USA
  2. 2.Department of ForestryNorth Carolina State University, Raleigh, North Carolina 27606USA
  3. 3.USDA, Forest ServiceCenter for Forested Wetlands Research, Charleston, South Carolina 29414USA

Personalised recommendations