Environmental Management

, Volume 32, Issue 3, pp 299–311

A VSA-Based Strategy for Placing Conservation Buffers in Agricultural Watersheds



Conservation buffers have the potential to reduce agricultural nonpoint source pollution and improve terrestrial wildlife habitat, landscape biodiversity, flood control, recreation, and aesthetics. Conservation buffers, streamside areas and riparian wetlands are being used or have been proposed to control agricultural nonpoint source pollution. This paper proposes an innovative strategy for placing conservation buffers based on the variable source area (VSA) hydrology. VSAs are small, variable but predictable portion of a watershed that regularly contributes to runoff generation. The VSA-based strategy involves the following three steps: first, identifying VSAs in landscapes based on natural characteristics such as hydrology, land use/cover, topography and soils; second, targeting areas within VSAs for conservation buffers; third, refining the size and location of conservation buffers based on other factors such as weather, environmental objectives, available funding and other best management practices. Building conservation buffers in VSAs allows agricultural runoff to more uniformly enter buffers and stay there longer, which increases the buffer’s capacity to remove sediments and nutrients. A field-scale example is presented to demonstrate the effectiveness and cost-effectiveness of the within-VSA conservation buffer scenario relative to a typical edge-of-field buffer scenario. The results enhance the understanding of hydrological processes and interactions between agricultural lands and conservation buffers in agricultural landscapes, and provide practical guidance for land resource managers and conservationists who use conservation buffers to improve water quality and amenity values of agricultural landscape.


Conservation buffers Water quality Landscape planning Benefit-cost analysis Variable source areas 


  1. Agricultural Research Service—U.S. Department of Agriculture (ARS). 1999. APEX: User’s guide and technical documentation, version 8190. Blackland Research Center, Temple, TXGoogle Scholar
  2. Amerman, C. R. 1965The use of unit-source watershed data for runoff prediction.Water Resource Research1499508Google Scholar
  3. Andersson, L., Lepisto, A. 1998Links between runoff generation, climate and nitrate-N leaching from forested catchments.Water, Air, and Soil Pollution105227237Google Scholar
  4. Anderson, M., Peters, N. E., Walling, D. 1997Special issue: TOPMODEL.Hydrological Processes1110691356CrossRefGoogle Scholar
  5. Arnold, J., Atwood, G., J. D., Benson, V.W., Srinivasan, R, and Williams, J.R. 1998. Potential environmental and economic impacts of implementing national conservation buffer initiative sedimentation control measures. USDA, NRCS, Resource Assessments Division Working Paper, Temple, TXGoogle Scholar
  6. Baumol, W. J., Oates, W. E. 1988The theory of environmental policy, second edition.Cambridge University PressCambridgeGoogle Scholar
  7. Betson, R. P. 1964What is watershed runoff?Journal of Geophysical Research6915411552Google Scholar
  8. Beven, K., Quinn, P., Romanowicz, R., Freer, J., Fisher, J., and Lamb, R. 1995. TOPMODEL: A users guide to the distribution version for DOS (95.02). Center for Research on Environmental Systems and Statistics, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster, UKGoogle Scholar
  9. Beven, K. J., Kirkby, M. J. 1979A physically based, variable contributing area model of basin hydrology.Hydrological Science Bulletin244369Google Scholar
  10. Blazkova, S., Beven, K. 1997Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL.Journal of Hydrology195256278CrossRefGoogle Scholar
  11. Calver, A., Kirkby, M. J., Weyman, D. R. 1972

    Modeling hillslope and channel flows.

    Chorley, R. J. eds. Spatial analysis in geomorphology.Methuen and Co. Ltd.London197218
    Google Scholar
  12. Ciallella, A. T., Dubayah, R., Lowrance, W., Levine, E. 1997Predicting soil drainage class using remotely sensed and digital elevation data.Photogrammetric Engineering and Remote Sensing63171178Google Scholar
  13. Cooke, J. G., Cooper, A. B. 1988Sources and sinks of nutrients in a New Zealand hill pasture catchment. III. Nitrogen.Hydrological Processes2135149Google Scholar
  14. Cooper, J. R., Gilliam, J. W., Daniels, R. B., Robarge, W. P. 1986Riparian areas as filters for agricultural sediment.Soil Science Society of American Journal60416420Google Scholar
  15. Crosson, W. L., Laymon, C. A., Inguva, R., Schamschula, M. P. 2002Assimilating remote sensing data in a surface flux-soil moisture model.Hydrological Processes1616451662CrossRefGoogle Scholar
  16. Daniels, R. B., Gilliam, J. W. 1996Sediment and chemical load reduction by grass and riparian filters.Soil Science Society of American Journal60246251Google Scholar
  17. Dietterick, B. C., Lynch, J. A., Corbett, E. S. 1999A calibration procedure using topmodel to determine suitability for evaluating potential climate change effects on water yield.Journal of the American Water Resources Association35457468Google Scholar
  18. Dillaha, T. A., Sherrard, J. H., Lee, D., Mostaghimi, S., Shanholtz, V. O. 1988Evaluation of vegetative filter strips as best management practices for feedlots.Journal of Water Pollution Control Federation6012311238Google Scholar
  19. Dillaha, T. A., Reneau, R. B., Mostaghimi, S., Lee, D. 1989Vegetative filter strips for agricultural nonpoint source pollution control.Transaction of the American Society of Agricultural Engineers32491496Google Scholar
  20. Dillaha, T. A., Reneau, R. B., Mostaghimi, S., Shanholtz, V. O., Magette, W. L. 1987. Evaluating nutrients and sediment losses from agricultural lands: Vegetative filter strips. USEPA Chesapeake Bay Liaison Office, Annapolis, MDGoogle Scholar
  21. Donnelly-Makowecki, L. M., Moore, R. D. 1999Hierarchical testing of three rainfall-runoff models in small forested catchments.Journal of Hydrology219136152CrossRefGoogle Scholar
  22. Dosskey, M., Schultz, D., Isenhart, T. 1997. Riparian buffers for agricultural land. Agroforestry Notes 3. National Agroforestry Center, USDA Forest Service, Rocky Mountain Station/USDA Natural Resources Conservation Service, East Campus—UNL, Lincoln, NEGoogle Scholar
  23. Dunne, T., Black, R. D. 1970aAn experimental investigation of runoff production in permeable soils.Water Resource Research6179191Google Scholar
  24. Dunne, T., Black, R. D. 1970bPartial area contributions to storm runoff in a small New England watershed.Water Resource Research612961311Google Scholar
  25. Franchini, M., Wendling, J., Obled, C., Todini, E. 1996Physical interpretation and sensitivity analysis of the TOPMODEL.Journal of Hydrology175293338CrossRefGoogle Scholar
  26. Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F., Steenhuis, T. S. 1999A GIS-based variable source area hydrology model.Hydrological Processes13805822CrossRefGoogle Scholar
  27. Freeze, R. A. 1972aThe role of subsurface flow in the generation of surface runoff 1: Base flow contribution to channel flow.Water Resource Research8609623Google Scholar
  28. Freeze, R. A. 1972bThe role of subsurface flow in the generation of surface runoff 2: Upstream source areas.Water Resource Research812961311Google Scholar
  29. Gallart, F., Llorens, P., Latron, J. 1994Studying the role of old agricultural terraces on runoff generation in a small Mediterranean mountainous basin.Journal of Hydrology159291303CrossRefGoogle Scholar
  30. Gao, D. 1996A normalized difference water index for remote sensing of vegetation liquid water from space.Remote Sensing of Environment58257266CrossRefGoogle Scholar
  31. Gburek, W. J., Sharpley, A. N. 1998Hydrologic controls on phosphorus loss from upland agricultural watersheds.Journal of Environmental Quality27267277Google Scholar
  32. Govindaraju, R. S. 1996Modeling overland flow contamination by chemicals mixed in shallow soil horizons under variable source area hydrology.Water Resource Research32753758Google Scholar
  33. Guntenspergen, G. R., Peterson, S. A., Leibowitz, S. G., Cowardin, L. M. 2002Indicators of wetland condition for the Prairie Pothole Region of the United States.Environmental Monitoring and Assessment78229252CrossRefPubMedGoogle Scholar
  34. Hewlett, J. D. 1982Principles of forest hydrology.University of Georgia PressAthens, GAGoogle Scholar
  35. Hewlett, J. D., and . Hibbert, R.A. 1965. Factors affecting the response of small watersheds to precipitation in humid areas. Presented at the International Symposium on Forest Hydrology, Pennsylvania State University, University ParkGoogle Scholar
  36. Hewlett, J. D., Troendle, C. A. 1975

    Non-point and diffused water sources: A variable sources area problem.

    The proceedings of the symposium on watershed management.American Society of Civil EngineersNew York2146
    Google Scholar
  37. Holko, L., Lepisto, A. 1997Modeling the hydrological behavior of a mountain catchment using TOPMODEL.Journal of Hydrology196361377CrossRefGoogle Scholar
  38. Huff, F. A., Angel, J. R. 1992Rainfall frequency atlas of the Midwest.MCC Research Report7192103Google Scholar
  39. Jacobs, T. J., Gilliam, J. W. 1985Riparian losses of nitrate from agricultural drainage waters.Journal of Environmental Quality14472478Google Scholar
  40. Kim, S., Delleur, J. W., Mitchell, J. K., Engell, B. E., Walker, S. E. 1999Simulation of runoff in agricultural watersheds with the drains using an extended TOPMODEL.Transactions of the American Society of Agricultural Engineers42639650Google Scholar
  41. Lant, C. L., Roberts, R. S. 1990Greenbelts in the cornbelt: Riparian wetlands, intrinsic values, and market failure.Environment and Planning A2213751388Google Scholar
  42. Lant, C. L., Kraft, S. E., Gillman, K. R. 1995Enrollment of filter strips and recharge areas in the CRP and USDA easement programs.Journal of Soil and Water Conservation50193200Google Scholar
  43. Larson, D. M., Helfand, G. E., House, B. W. 1996Second-best tax policies to reduce nonpoint source pollution.American Journal of Agricultural Economics7811081117Google Scholar
  44. Lowrance, R. R., Sharpe, J. K., Sheridan, J. M. 1986Long-term sediment deposition in the riparian zone of a coastal plain watershed.Journal of Soil Water Conservation41266271Google Scholar
  45. Lowrance, R. R., Todd, R. L., Asmussen, L. E. 1984Nutrient cycling in an agricultural watershed: Streamflow and artificial drainage.Journal of Environmental Quality132732Google Scholar
  46. Magette, W. L., Brinsfield, R. B., Palmer, R. E., Wood, J. D. 1989Nutrient and sediment removal by vegetated filter strips.The Transaction of the American Society of Agricultural Engineers32663667Google Scholar
  47. Massey, R. E. 2000. 1998 Missouri crop costs and 2000 crop cost of production estimates. Farm management newsletter, FM 2000-1. Department of Agricultural Economics, University of Missouri, Columbia, MOGoogle Scholar
  48. McFeeters, S. K. 1996The use of normalized difference water index in the delineation of open water features.International Journal of Remote Sensing1714251432Google Scholar
  49. Missouri Agricultural Statistics Service (MASS). 1991–2000. Missouri farm facts. MASS, Columbia, MOGoogle Scholar
  50. Mitsch, W.J., Day, J.W., Jr., Gilliam, J.W., Groffman, P.M., Hey, D.L., Randall, G.W., and Wang, N. 1999. Reducing nutrient loads, especially nitrate-nitrogen, to surface water, groundwater, and the Gulf of Mexico. Topic 5. Report for the Integrated Assessment on Hypoxia in the Gulf of Mexico. NOAA Coastal Ocean Program, Decision Analysis Series No. 19. U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA). Silver Spring, MDGoogle Scholar
  51. Moore, I. D., Norton, T. W., Williams, J. E. 1993Modeling environmental heterogeneity in forested landscapes.Journal of Hydrology150717747CrossRefGoogle Scholar
  52. National Agricultural Statistics Service (NASS). 1991–2000. Agricultural prices annual summaries: 1990–1999. USDA Economics and Statistics System, Albert R. Mann Library, Cornell University. http://usda.mannlib.cornell.edu/reports/nassr/price/zap-bb/Google Scholar
  53. O’Loughlin, E. M. 1981Saturation regions in catchments and their relation to soil and topographic properties.Journal of Hydrology53229246CrossRefGoogle Scholar
  54. Peterjohn, W. T., Correll, D. L. 1984Nutrient dynamics in an agricultural watershed: Observation on the role of a riparian forest.Ecology6514661475Google Scholar
  55. Phillips, J. D. 1989An evaluation of the factors determining the effectiveness of water quality buffer zones.Journal of Hydrology107133145CrossRefGoogle Scholar
  56. Prato, T., Shi, H. 1990A comparison of erosion and water pollution control strategies for an agricultural watershed.Water Resources Research26199205Google Scholar
  57. Qiu, Z., Prato, T. 1998Economic evaluation of riparian buffers in an agricultural watershed.Journal of the American Water Resources Association34877890Google Scholar
  58. Qiu, Z., Prato, T., McCamley, F. 2001Evaluating environmental risks using safety-first constraints.American Journal of Agricultural Economics83402413CrossRefGoogle Scholar
  59. Ragan, R. M. 1967. An experimental investigation of partial area contribution. In: The Proceedings of the Berne Symposium. International Association of Science and HydrologyGoogle Scholar
  60. Rallison, R. K. 1980. Origin and evolution of the SCS runoff equation. Pages 912–924 in The proceedings of the symposium on watershed management. The American Society of Civil Engineer, New YorkGoogle Scholar
  61. Ribaudo, M. O., R. D. Horan, and M. E. Smith. 1999. Economics of water quality protection from nonpoint sources: Theory and practices. Agricultural Economics Report No. 782. Resource Economics Division, Economic Research Service, U.S. Department of Agriculture, Washington, D.C.Google Scholar
  62. Robson, A. J., Whitehead, P. G., Johnson, R. C. 1993An application of a physically based semi-distributed model to the Balquhidder catchments.Journal of Hydrology145357370CrossRefGoogle Scholar
  63. Saulnier, G. M., Beven, K., Obled, C. 1997Including spatially variable effective soil depths in TOPMODEL.Journal of Hydrology202158172CrossRefGoogle Scholar
  64. Scanlon, T. M., Raffensperger, J. P., Hornberger, G. M., Clapp, R. B. 2000Shallow subsurface storm flow in a forested headwater catchment: Observation and modeling using a modified TOPMODEL.Water Resources Research3625752586CrossRefGoogle Scholar
  65. Schmitt, S.J. 1999. Application of a flow source mixing model and remote sensing to the hydrology and water quality of two small watersheds in Northern Missouri. Google Scholar
  66. Segerson, K. 1988Uncertainty and incentives for nonpoint pollution control.Journal of Environmental Economics and Management158798Google Scholar
  67. Stieglitz, M., Rind, D., Famiglietti, J., Rosenzweig, C. 1997An efficient approach to modeling the topographic control of surface hydrology for regional and global climate modeling.Journal of Climate10118137CrossRefGoogle Scholar
  68. Tennessee Valley Authority1965Area-stream factor correlation, a pilot study in the Elk River Basin.International Association of Scientific Hydrology Bulletin102237Google Scholar
  69. Toyra, J., Pietroniro, A., Martz, L. W., Prowse, T. D. 2002A multi-sensor approach to wetland flood monitoring.Hydrological Processes1615691581CrossRefGoogle Scholar
  70. Valeo, C., Moin, S. M. A. 2000Variable source area modeling in urbanizing watersheds.Journal of Hydrology2286881CrossRefGoogle Scholar
  71. Vanderbilt, V. C., Perry, G. L., Livingston, G. P., Ustin, S. L., Barrios, M. C. D., Beron, F. M.,  et al. 2002Inundation discriminated using sun glint.Transactions on Geoscience and Remote Sensing4012791287CrossRefGoogle Scholar
  72. Walter, M. T., Brooks, M. F., Walter, M. F., Steenhuis, T. S., Scott, C. A., Boll, J. 2001Evaluation of soluble phosphorus loading from manuere-applied fields under various spreading strategies.Journal of Soil and Water Conservation56329335Google Scholar
  73. Walter, M. T., Walter, M. F., Brooks, E. S., Steenhuis, T. S., Boll, J., Weiler, K. 2000Hydrologically sensitive areas: Variable source area hydrology implications for water quality risk assessment.Journal of Soil and Water Conservation55277284Google Scholar
  74. Wenger, S. J. 1999. A review of the scientific literature on riparian buffer width, extent and vegetation. Institute of Ecology—University of Georgia, Athens, GA. 59 pp.Google Scholar
  75. Wigmosta, M. S., Vail, L. W., Lettenmaier, D. P. 1994A distributed hydrology-vegetation model for complex terrain.Water Resource Research316651679CrossRefGoogle Scholar
  76. Xiang, W. N. 1993A GIS method for riparian water quality buffer generation.International Journal of Geographical Information Systems75770Google Scholar
  77. Xiang, W. N. 1996GIS-based riparian buffer analysis: Injecting geographic information into landscape planning.Landscape and Urban Planning34110CrossRefGoogle Scholar
  78. Yoo, C. 2002A ground validation problem of remotely sensed soil moisture data.Stochastic Environmental Research and Risk Assessment16175187CrossRefGoogle Scholar
  79. Zollweg, J.A. 1994. Effective use of geographic information systems for rainfall-runoff modeling. Ph.D. thesis. Cornell University, Ithaca, NYGoogle Scholar
  80. Zollweg, J. A., Gburek, W. J., Steenhuis, T. S. 1996SmoRMod—A GIS-integrated rainfall-runoff model.Transactions of the American Society of Agricultural Engineers3912991307Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations