Advertisement

Environmental Management

, Volume 32, Issue 5, pp 614–623 | Cite as

Modeling Habitat Suitability for Complex Species Distributions by Environmental-Distance Geometric Mean

  • Alexandre H. Hirzel
  • Raphaël Arlettaz
Research

Abstract

This paper presents a new habitat suitability modeling method whose main properties are as follows: (1) It is based on the density of observation points in the environmental space, which enables it to fit complex distributions (e.g. nongaussian, bimodal, asymmetrical, etc.). (2) This density is modeled by computing the geometric mean to all observation points, which we show to be a good trade-off between goodness of fit and prediction power. (3) It does not need any absence information, which is generally difficult to collect and of dubious reliability. (4) The environmental space is represented either by an expert-selection of standardized variables or the axes of a factor analysis [in this paper we used the Ecological Niche Factor Analysis (ENFA)].We first explain the details of the geometric mean algorithm and then we apply it to the bearded vulture (Gypaetus barbatus) habitat in the Swiss Alps. The results are compared to those obtained by the “median algorithm” and tested by jack-knife cross-validation. We also discuss other related algorithms (BIOCLIM, HABITAT, and DOMAIN). All these analyses were implemented into and performed with the ecology-oriented GIS software BIOMAPPER 2.0.The results show the geometric mean to perform better than the median algorithm, as it produces a tighter fit to the bimodal distribution of the bearded vulture in the environmental space. However, the “median algorithm” being quicker, it could be preferred when modeling more usual distribution.

Keywords

Bearded vulture Gypaetus barbatus Ecological niche factor analysis Ecological envelopes Environmental space Habitat suitability model Jack-knife cross-validation Median algorithm 

Notes

Acknowledgements

We thank the Réseau Gypaète Suisse occidentale (Bertrand Posse), the Service de la chasse, de la pêche et de la faune du canton du Valais (Yvon Crettenand), the Swiss Ornithological Institute (Hans Schmid), and the Foundation Pro Bartgeier (Anne-Marie and Chasper Buchli) which gave us free access to the bearded vulture databases. Special thanks go to Christian Glenz and P. A Oggier. We are also grateful to Nicolas Perrin, Antoine Guisan, and William Hargrove for their interesting insights during the conception of these algorithms, and to Anthony Lehmann, Virginia H. Dale, and two anonymous reviewers for their keen comments about our manuscript.

References

  1. 1.
    Arlettaz, R., Posse, B. and Crettenand. Y. 2002. The bearded vulture in Valais in 1999. Pages 58–59 in Bearded vulture reintroduction into the Alps, Annual report 2000.Google Scholar
  2. 2.
    Austin, M. P. 1992Modeling the environmental niche of plants—implications for plant community response to elevated CO2 levels.Australian Journal of Botany40615630Google Scholar
  3. 3.
    Austin, M. P. 2002Spatial prediction of species distribution: an interface between ecological theory and statistical modelling.Ecological Modelling157101118CrossRefGoogle Scholar
  4. 4.
    Busby, J. R. 1988Potential impacts of climate change on Australia’s flora and faunaPearman, G. I. eds. Greenhouse: planning for climate changeCSIROMelbournePages 387398Google Scholar
  5. 5.
    Busby, J. R. 1991BIOCLIM—a bioclimate analysis and prediction system.Margules, C. R.Austin, M. P. eds. Nature conservation: cost effective biological surveys and data analysis.CSIROMelbourne6468Google Scholar
  6. 6.
    Carpenter, G., Gillison, A. N., Winter, J. 1993DOMAIN—a flexible modeling procedure for mapping potential distributions of plants and animals.Biodiversity and Conservation2667680Google Scholar
  7. 7.
    Dixon, K. R., Chapman, J. A. 1980Harmonic mean measure of animal activity areas.Ecology6110401044Google Scholar
  8. 8.
    Fielding, A. H., Bell, J. F. 1997A review of methods for the assessment of prediction errors in conservation presence/absence models.Environmental Conservation243849CrossRefGoogle Scholar
  9. 9.
    Gehring, T. M., Swihart, R. K. 2003Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape.Biological Conservation109283295CrossRefGoogle Scholar
  10. 10.
    Gower, J. C. 1971General coefficient of similarity and some of its properties.Biometrics27857Google Scholar
  11. 11.
    Guisan, A., Zimmermann, N. E. 2000Predictive habitat distribution models in ecology.Ecological Modelling135147186CrossRefGoogle Scholar
  12. 12.
    Hirzel, A. H., Helfer, V., Métral, F. 2001Assessing habitat-suitability models with a virtual species.Ecological Modelling145111121CrossRefGoogle Scholar
  13. 13.
    Hirzel, A. H., Hausser, J., Chessel, D., Perrin, N. 2002aEcological-niche factor analysis: how to compute habitat- suitability maps without absence data?Ecology8320272036Google Scholar
  14. 14.
    Hirzel, A. H., J. Hausser, and N. Perrin. 2002b, Biomapper 2.0. in Division of Conservation Biology, Bern. URL: http://www.unil.ch/biomapperGoogle Scholar
  15. 15.
    Hutchinson, G. E. 1957Concluding remarks.Cold Spring Harbor Symposium on Quantitative Biology22415427Google Scholar
  16. 16.
    Kawata, M. 2002Invasion of vacant niches and subsequent sympatric speciation.Proceedings of the Royal Society of London Series B-Biological Sciences2695563CrossRefPubMedGoogle Scholar
  17. 17.
    Manly, B. F. J. 1991Randomization and Monte Carlo methods in biologyChapman and HallLondonGoogle Scholar
  18. 18.
    Oksanen, J., Minchin, P. R. 2002Continuum theory revisited: what shape are species responses along ecological gradients?Ecological Modelling157119129CrossRefGoogle Scholar
  19. 19.
    Reutter, B. A., Helfer, V., Hirzel, A. H., Vogel, P. 2003Modelling habitat-suitability on the base of museum collections an example with three sympatric Apodemus species from the Alps.Journal of Biogeography30581590Google Scholar
  20. 20.
    Sokal, R. R., Rohlf, F. J. 1981Biometry: The principles and practice of statistics in biological research2. W. H. Freeman & Co.New YorkGoogle Scholar
  21. 21.
    Swihart, R. K., Gehring, T. M., Kolozsvary, M. B., Nupp, T. E. 2003Responses of ‘resistant’ vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries.Diversity and Distributions9118CrossRefGoogle Scholar
  22. 22.
    Walker, P. A., Cocks, K. D. 1991HABITAT—a procedure for modeling a disjoint environmental envelope for a plant or animal species.Global Ecology and Biogeography Letters1108118Google Scholar
  23. 23.
    White, G. C., Garrott, R. A. 1990Analysis of wildlife radiotracking dataAcademic PressSan DiegoGoogle Scholar
  24. 24.
    Zaniewski, A. E., Lehmann, A., Overton, J. M. C. 2002Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns.Ecological Modelling157261280CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Alexandre H. Hirzel
    • 1
  • Raphaël Arlettaz
    • 1
  1. 1.Institute of ZoologyDivision of Conservation Biology, University of Bern CH-3012 BernSwitzerland

Personalised recommendations