Environmental Management

, Volume 32, Issue 6, pp 706–719

A GIS Model of Subsurface Water Potential for Aquatic Resource Inventory, Assessment, and Environmental Management

  • Matthew E. Baker
  • Michael J. Wiley
  • Paul W. Seelbach
  • Martha L. Carlson
Research

Abstract

Biological, chemical, and physical attributes of aquatic ecosystems are often strongly influenced by groundwater sources. Nonetheless, widespread access to predictions of subsurface contributions to rivers, lakes, and wetlands at a scale useful to environmental managers is generally lacking. In this paper, we describe a “neighborhood analysis” approach for estimating topographic constraints on spatial patterns of recharge and discharge and discuss how this index has proven useful in research, management, and conservation contexts. The Michigan Rivers Inventory subsurface flux model (MRI-DARCY) used digital elevation and hydraulic conductivity inferred from mapped surficial geology to estimate spatial patterns of hydraulic potential. Model predictions were calculated in units of specific discharge (meters per day) for a 30-m2-cell raster map and interpreted as an index of potential subsurface water flux (shallow groundwater and event through-flow). The model was evaluated by comparison with measurements of groundwater-related attributes at watershed, stream segment, and local spatial scales throughout Lower Michigan (USA). Map-based predictions using MRI-DARCY accounted for 85% of the observed variation in base flow from 128 USGS gauges, 69% of the observed variation in discharge accrual from 48 river segments, and 29% of the residual variation in local groundwater flux from 33 locations as measured by hyporheic temperature profiles after factoring out the effects of climate. Although it does not incorporate any information about the actual water table surface, by quantifying spatial variation of key constraints on groundwater-related attributes, the model provides strata for more intensive study, as well as a useful spatial tool for regional and local conservation planning, fisheries management, wetland characterization, and stream assessment.

Keywords

Groundwater hydrology GIS Modeling Stream ecology Wetlands 

References

  1. 1.
    Albert, D. A., Denton, S. R., Barnes, B. V. 1986Regional landscape ecosystems of Michigan.School of Natural Resources, University of MichiganAnn ArborGoogle Scholar
  2. 2.
    Anderton, S., Latron, J., Gallart, F. 2002Sensitivity analysis and multi-response, multi-criteria evaluation of a physically based distributed model.Hydrological Processes16333353CrossRefGoogle Scholar
  3. 3.
    Baker, E. A., K. E. Wehrly, P. W. Seelbach, M. J. Wiley, L. Wang, and T. P. Simon. 2002. Use of explicit statistical modeling to assess ecological stream condition in the northern lakes and forests ecoregion. US Environmental Protection Agency R-EMAP, Final report for grant R-82620701-2, Duluth, MinnesotaGoogle Scholar
  4. 4.
    Baker, M. E., Wiley, M. J., Seelbach, P. W. 2001GIS-based hydrologic modeling of riparian areas: implications for stream water quality.Journal of the American Water Resources Association3716151628Google Scholar
  5. 5.
    Baker, M. E., M. J. Wiley, and P. W. Seelbach. 2003. GIS-based models of groundwater loading in glaciated landscapes: considerations and development in Lower Michigan. Fisheries Research Report 2064, Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  6. 6.
    Bartolino, I.R., and R. Niswonger. 1999. Numerical simulation of vertical ground-water flux of the Rio Grande from ground-water temperature profiles, Central New Mexico. US Geological Survey Water-Resources Investigations Report 99–4212Google Scholar
  7. 7.
    Bedient, P. B., and W. C. Huber. 1989. Hydrology and floodplain analysis. Addison-Wesley Publishing. Reading, MassachusettsGoogle Scholar
  8. 8.
    Beven, K. 2002Towards an alternative blueprint for a physically based digitally simulated hydrologic response modeling system.Hydrological Processes16189206CrossRefGoogle Scholar
  9. 9.
    Beven, K., Feyen, J. 2002The future of distributed modeling special issue.Hydrologic Processes16169172CrossRefGoogle Scholar
  10. 10.
    Beven, K. J., Kirkby, M. J. 1979A physically based variable contributing area model of basin hydrology.Hydrological Sciences Bulletin244369Google Scholar
  11. 11.
    Birch, A. F. 1942. Thermal conductivity and diffusivity, in A. F. Birch, J. F. Schairer, and H. C. Spicer (eds.), Handbook of physical constants. Special Paper, no. 36. Geological Society of AmericaGoogle Scholar
  12. 12.
    Bredchoeft, J. D., Papadopulos, I. S. 1965Rates of vertical groundwater movement estimated from the Earth’s thermal profile,Water Resources Research1(2)325328Google Scholar
  13. 13.
    Brunke, M., Gonser, T. 1997The ecological significance of exchange processes between rivers and groundwater.Freshwater Biology37133Google Scholar
  14. 14.
    Carlson, M. L. 2002. Groundwater discharge to stream channels: a test of a topographic groundwater model. MS thesis. University of Michigan, Ann ArborGoogle Scholar
  15. 15.
    Christensen, S., Rasmussen, K. R., Moller, K. 1998Prediction of regional groundwater flow to streams.Groundwater36351360Google Scholar
  16. 16.
    Clark S. P. 1966. Handbook of physical constants—revised edition. Memoir 97. Geological Society of America, 587 ppGoogle Scholar
  17. 17.
    Coopes, G. F. 1974. Au Sable River Watershed Project, Biological Report (1971–1973). An investigation into the effects of human use and development on the biology of a coldwater river system. Fisheries Management Report No. 7. Michigan Department of Natural Resources, Fisheries Division, LansingGoogle Scholar
  18. 18.
    Constantz, J., Stewart, A. E., Niswonger, R., Sarma, L. 2002Analysis of temperature profiles for investigating stream losses beneath ephemeral channels,Water Resources Research38(12)1316Google Scholar
  19. 19.
    Darcy, H. 1856Les fontaines publique de la ville de Dijon.Victor DalmontParisGoogle Scholar
  20. 20.
    Davis, S. N., DeWiest, R. J. 1966Hydrogeology.John Wiley & SonsNew YorkGoogle Scholar
  21. 21.
    Dawes, W. R., Short, D. 1994The significance of topology for modelling the surface hydrology of fluvial landscapes.Water Resources Journal1823143PubMedGoogle Scholar
  22. 22.
    Dorr Jr, J. A., Eschman, D. F. 1990The geology of Michigan.University of MichiganAnn ArborGoogle Scholar
  23. 23.
    Dunne, T. 1990

    Hydrology, mechanics, and geomorphic implications of erosion by subsurface flow.

    Higgins, C. G.Coates, D. R. eds. Groundwater geomorphology: the roles of subsurface water in earth-surface processes and landforms. The Special Paper 252.Geological Society of AmericaBoulder, Colorado128
    Google Scholar
  24. 24.
    Dunne, T., Leopold, L. B. 1978Water in environmental planning.W. H. Freeman and Co.New YorkGoogle Scholar
  25. 25.
    Engelen, G. B., and G. P. Jones. 1986. Development in the analysis of groundwater flow systems. Publication No. 163. IAHS, Amsterdam, The NetherlandsGoogle Scholar
  26. 26.
    Farrand, W. R., and D. Bell. 1982. Quaternary geology of Michigan. Michigan Department of Natural Resources, Geological Survey, Lansing, color mapGoogle Scholar
  27. 27.
    Freeze, R. A., Cherry, J. A. 1979Groundwater.Prentice-HallEnglewood Cliffs, New JerseyGoogle Scholar
  28. 28.
    Gerhart, J. M. 1984A model of regional groundwater flow in secondary permeability terrain.Groundwater22168175Google Scholar
  29. 29.
    Gerla, P. J. 1999Estimating the ground-water contribution in wetlands using modeling and digital terrain analysis.Wetlands19394402Google Scholar
  30. 30.
    Harbaugh, A. W., and M. G. McDonald. 1996a. Programmer’s documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model. US Geological Survey Open-File Report 96–486 Google Scholar
  31. 31.
    Harbaugh, A. W., and M. G. McDonald. 1996b. User’s documentation for MODFLOW-96, an update to the US Geological Survey modular finite-difference ground-water flow model. US Geological Survey Open-File Report 96–485Google Scholar
  32. 32.
    Heath, R. C. 1987. Basic ground-water hydrology. US Geological Survey Water Supply Paper 2220Google Scholar
  33. 33.
    Heath, R. C., Trainer, F. W. 1968Introduction to ground-water hydrology.John Wiley & SonsNew YorkGoogle Scholar
  34. 34.
    Hendrickson, G. E., and C. J. Doonan. 1971a. Reconnaissance of the Black River, a cold water river in the north central part of Michigan’s southern peninsula. Hydrologic Investigations Atlas HA-354. US Geological Survey, LansingGoogle Scholar
  35. 35.
    Hendrickson, G. E., and C. J. Doonan. 1971b. Reconnaissance of the Pere Marquette River, a cold water river in the central part of Michigan’s southern peninsula. Hydrologic Investigations Atlas HA-384. US Geological Survey, LansingGoogle Scholar
  36. 36.
    Hendrickson, G. E., and C. J. Doonan. 1972a. Hydrology and recreation on the cold-water resources of Michigan’s Southern Peninsula. Water Information Series Report 3. US Geological Survey, in cooperation with the Michigan Geological Survey, LansingGoogle Scholar
  37. 37.
    Hendrickson, G. E., and C. J. Doonan. 1972b. Reconnaissance of the Manistee River, a cold water river in the northwestern part of Michigan’s southern peninsula. Hydrologic Investigations Atlas HA-436. US Geological Survey, LansingGoogle Scholar
  38. 38.
    Higgins, J. V., M. Lammert, M. T. Bryer, M. M. DePhilip, and D. H. Grossman. 1998. Freshwater conservation in the Great Lakes basin: development and application of an aquatic community classification framework. Great Lakes Program, The Nature Conservancy, ChicagoGoogle Scholar
  39. 39.
    Hinton, M. J., Schiff, S. L., English, M. C. 1993Physical properties governing groundwater flow in a glacial till catchment.Journal of Hydrology142229249CrossRefGoogle Scholar
  40. 40.
    Hoaglund, J. R., Huffman, G. C., Grannemann, N. G. 2002Michigan basin regional ground water flow discharge to three Great Lakes.Groundwater40390406Google Scholar
  41. 41.
    Holling, C. S. 1998Two cultures of ecology.Conservation Ecology24Google Scholar
  42. 42.
    Holtschlag, D. J. 1996. A generalized estimate of ground-water recharge rates in the Lower Peninsula of Michigan. Open-file Report 96–593. US Geological Survey, LansingGoogle Scholar
  43. 43.
    Holtschlag, D. J., C. L. Luukkonen, and J. R. Nicholas. 1996. Simulation of ground-water flow in the Saginaw Aquifer, Clinton, Eaton, and Ingham counties, Michigan. Open-file Report 96–174. US Geological Survey, LansingGoogle Scholar
  44. 44.
    Horne, B. 2001. Prediction of temperature regime, steelhead production, and recreational angler benefit following hypothetical removal or selective withdrawal retrofit of Tippy and Hodenpyl dams on the Manistee River, Michigan. MS thesis. University of Michigan, Ann ArborGoogle Scholar
  45. 45.
    Hunt, R. J., Krabbenhoft, D. P., Anderson, M. P. 1996Groundwater inflow measurements in wetland systems.Water Resources Research32(3)495507CrossRefGoogle Scholar
  46. 46.
    Kazmierski, J. M. Kram, E. Mills, D. Phemister, N. Reo, C. Riggs, R., and Tefertiller, O. 2002. Upper Manistee River watershed conservation plan. MS project report to the Grand Traverse Land Conservancy, University of Michigan, Ann ArborGoogle Scholar
  47. 47.
    Knutilla, R. L. 1970. Water resources of the Black River basin, southeastern Michigan. Hydrologic Investigations Atlas HA-338. US Geological Survey, LansingGoogle Scholar
  48. 48.
    Knutilla, R. L., and W. B. Allen. 1975. Water resources of the River Raisin Basin, southeastern Michigan. Hydrologic Investigations Atlas HA-520. US Geological Survey, LansingGoogle Scholar
  49. 49.
    Lapham, W. W. 1989. Use of temperature profiles beneath streams to determine rates of vertical groundwater flow and vertical hydraulic conductivity. US Geological Survey Water Supply Paper 2337Google Scholar
  50. 50.
    Larson, R. W., W. B. Allen, and S. D. Hanson. 1975. Water resources of the Huron River basin, southeastern Michigan. Hydrologic Investigations Atlas HA-514. US Geological Survey, LansingGoogle Scholar
  51. 51.
    Levine, D. A., Jones, W. W. 1990Modeling phosphorous loading to three Indiana reservoirs: a geographic information system approach.Lake and Reservoir Management68191Google Scholar
  52. 52.
    Mandle, R. J., and D. B. Westjohn. 1989. Geohydrologic framework and ground-water flow in the Michigan basin. Pages 83–110, in: L. A. Swain and A. I. Johnson (eds.), Regional aquifer systems of the United States—aquifers of the Midwestern area. Monograph series 13. American Water Resources Association Google Scholar
  53. 53.
    Martin, P. J., Frind, E. O. 1998Modeling a complex multi aquifer system: the Waterloo moraine.Groundwater36679690Google Scholar
  54. 54.
    McDonald, M. G., and A. W. Harbaugh. 1988. A modular three- dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations, Book 6, chap. A1. US Geological SurveyGoogle Scholar
  55. 55.
    Meisner, J. D., Rosenfeld, J. S., Regier, H. A. 1988The role of groundwater in the impact of climate warming on stream salmonids.Fisheries1328Google Scholar
  56. 56.
    Merkey, D. H. 2002. Development of a landscape-level wetland assessment method for depressional wetlands in the southern Lower Peninsula of Michigan. Final Report for Grant CD005663-01–0. US Environmental Protection Agency Region 5, ChicagoGoogle Scholar
  57. 57.
    Molenat, J., Gascuel-Odoux, C. 2002Modelling flow and nitrate transport in groundwater for the prediction of water travel times and consequences of land use evolution on water quality.Hydrological Processes16479492CrossRefGoogle Scholar
  58. 58.
    Molson, J. W., and E. O. Frind. 1995. WATFLOW/3D: A 3D groundwater flow model, version 1.0. Waterloo Centre for Groundwater Research Google Scholar
  59. 59.
    Nowlin, J. O. 1973. Water resources of the Clinton River Basin, southeastern Michigan. Hydrologic Investigations Atlas HA-469. US Geological Survey, LansingGoogle Scholar
  60. 60.
    O’Neill, R. V., Hunsaker, C. T., Jones, K. B., Riitters, K. H., Wickham, J. D., Schwartz, P. M., Goodman, I. A., Jackson, B. L., Baillargeon, W. S. 1997Monitoring environmental quality at the landscape scale.Bioscience47513519Google Scholar
  61. 61.
    Poff, N. L., Ward, J. V. 1990Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity.Environmental Management14629645Google Scholar
  62. 62.
    Quinn, P. F., Beven, K., Chevallier, P., Planchon, O. 1991The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models.Hydrological Processes55979Google Scholar
  63. 63.
    Schlosser, I. J. 1990Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment.Environmental Management14621628Google Scholar
  64. 64.
    Seelbach, P. W. and M. J. Wiley. 1997. Overview of the Michigan Rivers Inventory (MRI) Project. Fisheries Technical Report 97–3. Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  65. 65.
    Seelbach, P. W., M. J. Wiley, J. C. Kotanchik, and M. E. Baker. 1997. A landscape-based ecological classification system for river valley segments in Lower Michigan (MI-VSEC 1.0). Fisheries Research Report 2036. Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  66. 66.
    Seelbach, P. W., Wiley, M. J., Soranno, P. A., Bremigan, M. T. 2001

    Aquatic conservation planning: using landscape maps to predict ecological reference conditions for specific waters.

    Gutzwiller, K. eds. Concepts and applications of landscape ecology in biological conservation.Springer-VerlagNew York454478
    Google Scholar
  67. 67.
    Spaulding, W. M., B. C. Dean, and R. G. Wicklund. 1961. Tobacco River watershed. Survey and plans report. Michigan Department of Conservation, Fish Division, LansingGoogle Scholar
  68. 68.
    Stallman, R. W. 1963. Computation of groundwater velocity from temperature data. Pages 26–46, in R. Bentall (ed.), Methods of collecting and interpreting groundwater data. Water Supply Paper 1544-H. US Geological Survey, LansingGoogle Scholar
  69. 69.
    Taniguchi, M. 1993Evaluation of vertical groundwater fluxes and thermal properties of aquifers based on transient temperature-depth profiles.Water Resources Research29(7)20212026CrossRefGoogle Scholar
  70. 70.
    Todd, D. K. 1976Groundwater hydrology.John Wiley and SonsNew YorkGoogle Scholar
  71. 71.
    Tody, W. H., R. G. Wickund, and B. C. Dean. 1954. Cedar River watershed. Surveys and plans report No. 1. Michigan Department of Conservation, Fish Division. Lake and Stream Improvement Section, LansingGoogle Scholar
  72. 72.
    Toth, J. 1995Hydraulic continuity in large sedimentary basins.Hydrogeology Journal3416CrossRefGoogle Scholar
  73. 73.
    USGS. 1997. U.S. Geological Survey digitized data for vector and raster layers: documentation and metadata. Downloaded from US Geological Survey website: http://mapping.usgs.gov/Google Scholar
  74. 74.
    Wall, S. S., Blausey, C. M., Jenks, J. A., Berry Jr, C. R. 2001Topeka shiner (Notropis topeka) population status and habitat conditions in South Dakota streams.South Dakota State UniversityBookingsGoogle Scholar
  75. 75.
    Wehrly, K. E., M. J. Wiley, and P. W. Seelbach. 1998. Landscape-based models that predict July thermal characteristics of Lower Michigan rivers. Fisheries Research Report 2037. Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  76. 76.
    Wehrly, K. E., Wiley, M. J., Seelbach, P. W. 2002Classifying regional variation in thermal regime using stream fish community patterns.Transactions of the American Fisheries Society1321838PubMedGoogle Scholar
  77. 77.
    Wicklund, R. G., and B. C. Dean. 1957. Little Manistee River Watershed: Survey and plans report. Dingell-Johnson Project F4R7. Michigan Department of Conservation, Fish Division. LansingGoogle Scholar
  78. 78.
    Wicklund, R. G., and N. C. Dean. 1958. Betsie River Watershed. Survey and plans report. Dingell-Johnson Project F4R6. Michigan Department of Conservation, Fish Division, LansingGoogle Scholar
  79. 79.
    Wiley, M. J., Kohler, S. L., and Seelbach., P. W. 1997. Reconciling landscape and local views of aquatic communities: lessons from Michigan’s trout streams. Freshwater Biology 37:133–148Google Scholar
  80. 80.
    Wiley, M. J., and Seelbach, P. W. (1997) An introduction to rivers: the conceptual basis for the Michigan Rivers Inventory (MRI) Project. Fisheries Special Report No. 20. Michigan Department of Natural Resources, Ann ArborGoogle Scholar
  81. 81.
    Wiley, M. J., Seelbach, P. W., Wehrly, K. E., Martin, J. 2001

    Regional ecological normalization using linear models: a meta-method for scaling stream assessment indicators. Chapter 22

    Simon, T. P. eds. Biological response signatures: multimetric index patterns for assessment of freshwater aquatic assemblages.CRC PressBoca Raton, Florida
    Google Scholar
  82. 82.
    Winter, T. C. 2001The concept of hydrological landscapes.Journal of the American Water Resources Association37335349Google Scholar
  83. 83.
    Winter, T. C., J. W. Harvey, O. L. Franke, W. M. Alley. 1998. Ground water and surface water: a single resource. Circular 1139. US Geological Survey, LansingGoogle Scholar
  84. 84.
    Zorn, T. G., Seelbach, P. W., Wiley, M. J. 2002Distributions of stream fishes and their relationship to stream size and hydrology in Michigan’s Lower Peninsula.Transactions of the American Fisheries Society1317085Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2003

Authors and Affiliations

  • Matthew E. Baker
    • 1
    • 2
  • Michael J. Wiley
    • 1
  • Paul W. Seelbach
    • 3
  • Martha L. Carlson
    • 1
  1. 1.School of Natural Resources and EnvironmentUniversity of Michigan, 430 East University, Ann Arbor, MI 48109-1115USA
  2. 2.Smithsonian Environmental Research Center647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA
  3. 3.Institute for Fisheries ResearchMichigan Department of Natural Resources, 212 Museums Annex, 1109 North University, Ann Arbor, MI 48109USA

Personalised recommendations