Skip to main content

Advertisement

Log in

New Insights into Lidocaine and Adrenaline Effects on Human Adipose Stem Cells

  • Original Article
  • Experimental/Special Topics
  • Published:
Aesthetic Plastic Surgery Aims and scope Submit manuscript

Abstract

Background

Adipose stem cells have gained great interest in plastic and reconstructive surgery with their ability to improve engraftment after fat transfer for soft tissue filling. It is therefore essential to know the effect of the drugs commonly used during the lipoaspiration procedure, such as lidocaine and adrenaline. Indeed, these drugs are infiltrated at the fat donor site for local anesthesia and for reduction of bleeding. This study analyzed the effects of these drugs on the viability of adipose-derived stem cells and on their inflammatory status.

Methods

Adipose-derived stem cells from lipoaspirates were grown in culture before being treated with different clinical doses of lidocaine at different times of exposure (1–24 h), and with adrenaline (1 μg/mL). Cytotoxicity was measured by lactate dehydrogenase assay and by flow cytometry with annexin V/propidium iodide staining. In parallel, the secretion of the proinflammatory cytokines tumor necrosis factor-alpha (TNFα), interleukin-6 (IL-6), and monocyte chemotactic protein-1 (MCP-1) was tested by enzyme-linked immunoassay.

Results

Lidocaine affected cell viability after 24 h, even when the cells were exposed for only 1 or 2 h. Apoptosis was not involved in lidocaine cytotoxicity. Regarding inflammation, no TNFα was produced, and lidocaine decreased the levels of IL-6 and MCP-1 in a dose-dependent manner. In contrast, adrenaline did not influence cell viability or cytokine secretions.

Conclusions

Adipose tissue should be handled appropriately to remove lidocaine and adrenaline, with such procedures as washing and centrifugation. This study provides new insights into the use of lidocaine and adrenaline for fat transfer or stem cell isolation from lipoaspirates.

Level of Evidence II

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gimble JM, Guilak F, Bunnell BA (2010) Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 1:19

    Article  PubMed  Google Scholar 

  2. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  3. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  4. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118:108S–120S

    Article  PubMed  CAS  Google Scholar 

  5. Moseley TA, Zhu M, Hedrick MH (2006) Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg 118:121S–128S

    Article  PubMed  CAS  Google Scholar 

  6. Tabit CJ, Slack GC, Fan K, Wan DC, Bradley JP (2011) Fat grafting versus adipose-derived stem cell therapy: distinguishing indications, techniques, and outcomes. Aesthetic Plast Surg 36(3):704–713

    Article  PubMed  Google Scholar 

  7. Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizuka F, Inoue K, Suga H, Yoshimura K (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3382

    Article  PubMed  CAS  Google Scholar 

  8. Yoshimura K, Sato K, Aoi N, Kurita M, Hirohi T, Harii K (2007) Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plast Surg 32:48–55

    Article  PubMed  Google Scholar 

  9. Yoshimura K, Asano Y, Aoi N, Kurita M, Oshima Y, Sato K, Inoue K, Suga H, Eto H, Kato H, Harii K (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16:169–175

    Article  PubMed  Google Scholar 

  10. Zhu M, Zhou Z, Chen Y, Schreiber R, Ransom JT, Fraser JK, Hedrick MH, Pinkernell K, Kuo HC (2010) Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg 64:222–228

    Article  PubMed  CAS  Google Scholar 

  11. Tiryaki T, Findikli N, Tiryaki D (2011) Staged stem cell-enriched tissue (SET) injections for soft tissue augmentation in hostile recipient areas: a preliminary report. Aesthetic Plast Surg 35:965–971

    Article  PubMed  Google Scholar 

  12. Maurice JM, Gan Y, Ma Fx, Chang YC, Hibner M, Huang Y (2010) Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: involvement of ERK and Akt signaling pathways. Acta Pharmacol Sinica 31:493–500

    Article  CAS  Google Scholar 

  13. Cummins TR (2007) Setting up for the block: the mechanism underlying lidocaine’s use-dependent inhibition of sodium channels. J Physiol 582(Pt 1):11

    Article  PubMed  CAS  Google Scholar 

  14. Bernards CM, Kopacz DJ (1999) Effect of epinephrine on lidocaine clearance in vivo: a microdialysis study in humans. Anesthesiology 91:962–968

    Article  PubMed  CAS  Google Scholar 

  15. Fedder C, Beck-Schimmer B, Aguirre J, Hasler M, Roth-Z’graggen B, Urner M, Kalberer S, Schlicker A, Votta-Velis G, Bonvini JM, Graetz K, Borgeat A (2010) In vitro exposure of human fibroblasts to local anaesthetics impairs cell growth. Clin Exp Immunol 162:280–288

    Article  PubMed  CAS  Google Scholar 

  16. Grishko V, Xu M, Wilson G, Pearsall AW (2010) Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Joint Surg Am Vol 92:609–618

    Article  Google Scholar 

  17. Jacobs TF, Vansintjan PS, Roels N, Herregods SS, Verbruggen G, Herregods LL, Almqvist KF (2011) The effect of lidocaine on the viability of cultivated mature human cartilage cells: an in vitro study. Knee Surg Sports Traumatol Arthrosc 19:1206–1213

    Article  PubMed  Google Scholar 

  18. Large V, Reynisdottir S, Eleborg L, van Harmelen V, Strommer L, Arner P (1997) Lipolysis in human fat cells obtained under local and general anesthesia. Int J Obes Relat Metab Disord 21:78–82

    Article  PubMed  CAS  Google Scholar 

  19. Shoshani O, Berger J, Fodor L, Ramon Y, Shupak A, Kehat I, Gilhar A, Ullmann Y (2005) The effect of lidocaine and adrenaline on the viability of injected adipose tissue: an experimental study in nude mice. J Drugs Dermatol 4:311–316

    PubMed  Google Scholar 

  20. Keck M, Janke J, Ueberreiter K (2009) Viability of preadipocytes in vitro: the influence of local anesthetics and pH. Dermatol Surg 35:1251–1257

    Article  PubMed  CAS  Google Scholar 

  21. Keck M, Zeyda M, Gollinger K, Burjak S, Kamolz LP, Frey M, Stulnig TM (2010) Local anesthetics have a major impact on viability of preadipocytes and their differentiation into adipocytes. Plast Reconstr Surg 126:1500–1505

    Article  PubMed  CAS  Google Scholar 

  22. Boselli E, Duflo F, Debon R, Allaouchiche B, Chassard D, Thomas L, Portoukalian J (2003) The induction of apoptosis by local anesthetics: a comparison between lidocaine and ropivacaine (table of contents). Anesth Analg 96:755–756

    Article  PubMed  CAS  Google Scholar 

  23. Keck M, Zeyda M, Burjak S, Kamolz LP, Selig H, Stulnig TM, Frey M (2012) Coenzyme q10 does not enhance preadipocyte viability in an in vitro lipotransfer model. Aesthetic Plast Surg 36:453–457

    Article  PubMed  Google Scholar 

  24. Bartynski J, Marion MS, Wang TD (1990) Histopathologic evaluation of adipose autografts in a rabbit ear model. Otolaryngol Head Neck Surg 102:314–321

    PubMed  CAS  Google Scholar 

  25. Murumalla R, Bencharif K, Gence L, Bhattacharya A, Tallet F, Gonthier MP, Petrosino S, di Marzo V, Cesari M, Hoareau L, Roche R (2011) Effect of the cannabinoid receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation. J Inflamm Lond 8:33

    Article  PubMed  CAS  Google Scholar 

  26. Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A, Hoarau JJ, Cesari M, Roche R (2005) Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 124:113–121

    Article  PubMed  CAS  Google Scholar 

  27. Girard AC, Loyher PL, Bencharif K, Balat M, Lefebvre d’Hellencourt C, Delarue P, Hulard O, Roche R, Hoareau L, Festy F (2011) Lidocaine: an attractive local anesthetic for lipoaspiration procedure in stem cells regenerative medicine. Paper presented at the 2011 annual meeting of the international federation for adipose therapeutics and science, Miami Beach

  28. Moore JH Jr, Kolaczynski JW, Morales LM, Considine RV, Pietrzkowski Z, Noto PF, Caro JF (1995) Viability of fat obtained by syringe suction lipectomy: effects of local anesthesia with lidocaine. Aesthetic Plast Surg 19:335–339

    Article  PubMed  Google Scholar 

  29. Hoareau L, Bencharif K, Gence L, Girard AC, Delarue P, Hulard O, Festy F, Roche R (2012) Washing or centrifugating the fat? SICAAAMS 2012, Geneva

  30. Kurita M, Matsumoto D, Shigeura T, Sato K, Gonda K, Harii K, Yoshimura K (2008) Influences of centrifugation on cells and tissues in liposuction aspirates: optimized centrifugation for lipotransfer and cell isolation. Plast Reconstr Surg 121:1033–1041 discussion 1042–1033

    Article  PubMed  CAS  Google Scholar 

  31. Coleman SR (1997) Facial recontouring with lipostructure. Clin Plast Surg 24:347–367

    PubMed  CAS  Google Scholar 

  32. Hollmann MW, Durieux ME (2000) Local anesthetics and the inflammatory response: a new therapeutic indication? Anesthesiology 93:858–875

    Article  PubMed  CAS  Google Scholar 

  33. Li CY, Tsai CS, Hsu PC, Chueh SH, Wong CS, Ho ST (2003) Lidocaine attenuates monocyte chemoattractant protein-1 production and chemotaxis in human monocytes: possible mechanisms for its effect on inflammation. Anesth Analg 97:1312–1316

    Article  PubMed  Google Scholar 

  34. Wang HL, Zhang WH, Lei WF, Zhou CQ, Ye T (2011) The inhibitory effect of lidocaine on the release of high-mobility group box 1 in lipopolysaccharide-stimulated macrophages. Anesth Analg 112:839–844

    Article  PubMed  CAS  Google Scholar 

  35. Boni R (2010) Tumescent liposuction: efficacy of a lower lidocaine dose (400 mg/l). Dermatology 220:223–225

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been financially supported by the Ministère de l’Enseignement Supérieur et de la Recherche, by the Association Nationale de la Recherche et de la Technologie, and by the University of Reunion Island. We are grateful to plastic surgeons Delarue P. and Hulard O. who took part in this study and allowed the collection of subcutaneous adipose tissue samples, to the group Clinifutur, to the entire team of the Biochemistry Department of the Félix Guyon Hospital, Reunion island, and to the French Ministry of National Education and Research and the Association Nationale de la Recherche et de la Technologie (ANRT) for their financial support. Finally, we thank all the patients who consented to the collection of tissue samples and thus made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Claire Girard.

Additional information

Anne-Claire Girard, Michael Atlan, Laurence Hoareau, Franck Festy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, AC., Atlan, M., Bencharif, K. et al. New Insights into Lidocaine and Adrenaline Effects on Human Adipose Stem Cells. Aesth Plast Surg 37, 144–152 (2013). https://doi.org/10.1007/s00266-012-9988-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00266-012-9988-9

Keywords

Navigation