Advertisement

Aesthetic Plastic Surgery

, Volume 35, Issue 4, pp 628–635 | Cite as

Current Concepts in Scar Evolution and Control

  • Alan D. Widgerow
Review

Abstract

The basic principles influencing scar expression and outcome have long been defined. Although these were relatively clear at the time, the exact events at a molecular level were poorly defined. The past decade has delineated the myriad of events that occur in the run-up to scar evolution far more clearly, although the intricate details have yet to be elucidated. What is clear is that a series of conversations and crosstalk takes place in the cell cytosol, in the cellular nucleus, and outside the cell within in the extracellular matrix. This interaction or “dynamic reciprocity” takes place via a series of signals, protein activation, ionic translocations, and receptor transactions. Marrying the previously defined principles with current described cellular/extracellular matrix (ECM) interactions enables us to describe more accurately the crosstalk occurring in scar evolution and possibly to influence the “wording” of that crosstalk to improve scar outcome. Thus, the principles of mechanostimulation and scar support, hydration occlusion, controlled inflammation, and collagen/extracellular remodeling are discussed with possible interventions in each category.

Keywords

Cellular crosstalk Scar Collagen Mechanotension Inflammation Collagen remodeling Scar management Multimodality scar control 

Notes

Disclosures

Dr. Widgerow serves as an R&D consultant for Litha Healthcare Inc. and receives consulting fees.

References

  1. 1.
    Widgerow AD, Chait LA, Stals R, Stals P (2000) New innovations in scar management. Aesthet Plast Surg 24:227CrossRefGoogle Scholar
  2. 2.
    Widgerow AD, Chait LAC, Stals R, Stals P, Candy G (2009) Multimodality scar management program. Aesthet Plast Surg 33(4):533CrossRefGoogle Scholar
  3. 3.
    Elliot D, Cory-Pearce R, Rees GM (1985) The behaviour of presternal scars in a fair-skinned population. Ann R Coll Surg Engl 67:238PubMedGoogle Scholar
  4. 4.
    Meyer M, McGrouther DA (1991) A study relating wound tension to scar morphology in the presternal scar using Langers technique. Br J Plast Surg 44:291PubMedCrossRefGoogle Scholar
  5. 5.
    Chiquet M, Gelman L, Lutz R, Maier S (2009) From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim Biophys Acta 1793:911–920PubMedCrossRefGoogle Scholar
  6. 6.
    Munevar S, Wang Y, Dembo M (2004) Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci 117:85–92PubMedCrossRefGoogle Scholar
  7. 7.
    Li C, Xu Q (2007) Mechanical stress-initiated signal transduction in vascular smooth muscle cells in vitro and in vivo. Cell Signal 19:881–891PubMedCrossRefGoogle Scholar
  8. 8.
    Jalali S, del Pozo MA, Chen K, Miao H, Li Y, Schwartz MA, Shyy JY, Chien S (2001) Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 98:1042–1046PubMedCrossRefGoogle Scholar
  9. 9.
    Reiffel RS (1995) Prevention of hypertrophic scars by long term paper tape application. Plast Reconstr Surg 96:1715PubMedCrossRefGoogle Scholar
  10. 10.
    Atkinson JM, McKenna KT, Barnett AG, McGrath DJ, Rudd M (2005) A randomized controlled trial to determine the efficacy of paper tape in preventing hypertrophic scar formation in surgical excisions that traverse Langer’s skin tension lines. Plastic Reconstr Surg 116(6):1648–1656 (discussion 1657–1658)CrossRefGoogle Scholar
  11. 11.
    Sawada Y, Sone K (1992) Hydration and occlusion treatment for hypertrophic scars and keloids. Br J Plast Surg 45:599PubMedCrossRefGoogle Scholar
  12. 12.
    Mustoe TA, Cooter RD, Gold MH, Hobbs FD, Ramelet AA, Shakespeare PG, Stella M, Téot L, Wood FM, Ziegler UE, International Advisory Panel on Scar Management (2002) International clinical recommendations on scar management. Plast Reconstr Surg 110(2):560–571PubMedCrossRefGoogle Scholar
  13. 13.
    Sawada Y, Urushidate S, Nihei Y (1998) Hydration and occlusive treatment of a sutured wound. Ann Plast Surg 41:508PubMedCrossRefGoogle Scholar
  14. 14.
    Mustoe TA (2008) Evolution of silicone therapy and mechanism of action in scar management. Aesthet Plast Surg 32(1):82–92CrossRefGoogle Scholar
  15. 15.
    Tandara AA, Mustoe TA (2008) The role of the epidermis in the control of scarring: evidence for mechanism of action for silicone gel. J Plast Reconstr Aesthet Surg 61(10):1219–1225PubMedCrossRefGoogle Scholar
  16. 16.
    Tandara AA, Mustoe TA (2010) MMP- and TIMP-secretion by human cutaneous keratinocytes and fibroblasts—Impact of coculture and hydration. J Plast Reconstr Aesthet Surg. doi:10.1016/j.bjps.2010.03.051
  17. 17.
    Gallant-Behm CL, Mustoe TA (2010) Occlusion regulates epidermal cytokine production and inhibits scar formation. Wound Repair Regen 18(2):235–244PubMedCrossRefGoogle Scholar
  18. 18.
    Bock O, Yu H, Zitron S, Bayat A, Ferguson M, Mrowietz U (2005) Studies of transforming growth factors beta 1–3 and their receptors I and II in fibroblasts of keloid and hypertrophic scars. Acta Derm Venereol 85:216–220PubMedGoogle Scholar
  19. 19.
    Lee T, Chin G, Kim W, Chau D, Gittes G, Longaker M (1999) Expression of transforming growth factor beta 1, 2 and 3 proteins in keloids. Ann Plast Surg 43:179–184PubMedGoogle Scholar
  20. 20.
    ten Dijke P, Hill C (2004) New insights into TGF-beta-SMAD signalling. Trends Biochem Sci 29:265–273PubMedCrossRefGoogle Scholar
  21. 21.
    Flanders K (2004) SMAD3 as a mediator of the fibrotic response. Int J Exp Pathol 86:47–64CrossRefGoogle Scholar
  22. 22.
    Kopp J, Pries E, Said H, Hafemann B, Wickert L, Gressner A, Pallua N, Dooley S (2005) Abrogation of transforming growth factor-beta signaling by SMAD 7 inhibits collagen gel contraction of human dermal fibroblasts. J Biol Chem 280:21570–21576PubMedCrossRefGoogle Scholar
  23. 23.
    Nakao A, Afrakhte M, Moren A, Nakayama T, Christian J, Heuchel R, Itoh S, Kawabata M, Heldin N, Heldin C, ten Dijke P (1997) Identification of SMAD 7, a TGF-beta-inducible antagonist of TGF-beta signalling. Nature 389:549–551Google Scholar
  24. 24.
    Chan KY, Lau CL, Adeeb SM, Somasundaram S, Nasir-Zahari M (2005) A randomized, placebo-controlled, double-blind, prospective clinical trial of silicone gel in prevention of hypertrophic scar development in median sternotomy wound. Plast Reconstr Surg 116:1013–1020PubMedCrossRefGoogle Scholar
  25. 25.
    Gold MH, Foster TD, Adair MA, Burlison K, Lewis T (2001) Prophylactic use of topical silicone gel sheets following a surgical procedure in an office setting. Dermatol Surg 27(7):641–644PubMedCrossRefGoogle Scholar
  26. 26.
    Niessen FB, Spauwen PH, Robinson PH, Fidler V, Kon M (1998) The use of silicone occlusive sheeting (Sil-K) and silicone occlusive gel (Epiderm) in the prevention of hypertrophic scar formation. Plast Reconstr Surg 102(6):1962–1972PubMedCrossRefGoogle Scholar
  27. 27.
    Momeni M, Hafezi F, Rahbar H, Karimi H (2009) Effects of silicone gel on burn scars. Burns 35(1):70–74PubMedCrossRefGoogle Scholar
  28. 28.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746PubMedCrossRefGoogle Scholar
  29. 29.
    White CR (2004) In: Barnhill RL, Crowson AN (eds) Textbook of dermatopathology. McGraw Hill, New York, pp 349–355Google Scholar
  30. 30.
    ChenW Fu X, Ge S, Sun T, Zhou G, Jiang D, Sheng Z (2005) Ontogeny of expression of transforming growth factor-beta and its receptors and their possible relationship with scarless healing in human fetal skin. Wound Repair Regen 13:68–75CrossRefGoogle Scholar
  31. 31.
    Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM (2004) The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 165:753–761PubMedCrossRefGoogle Scholar
  32. 32.
    Sheridan RL, Tompkins RG (2004) What’s new in burns and metabolism. J Am Coll Surg 198:243–263PubMedCrossRefGoogle Scholar
  33. 33.
    Brinkhaus B, Lindner M, Schuppan D, Hahn EG (2000) Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 7:427–448PubMedCrossRefGoogle Scholar
  34. 34.
    Saika S, Ikeda K, Yamanaka O, Flanders KC, Okada Y, Miyamoto T, Kitano A, Ooshima A, Nakajima Y, Ohnishi Y, Kao WW (2006) Loss of tumor necrosis factor alpha potentiates transforming growth factor beta-mediated pathogenic tissue response during wound healing. Am J Pathol 168:1848–1860PubMedCrossRefGoogle Scholar
  35. 35.
    Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9):e234PubMedCrossRefGoogle Scholar
  36. 36.
    Freedberg IM, Tomic-Canic M, Komine M, Blumenberg M (2001) Keratins and the keratinocyte activation cycle. J Invest Dermatol 116(5):633–640PubMedCrossRefGoogle Scholar
  37. 37.
    Ulrich MM, Verkerk M, Reijnen L, Vlig M, van den Bogaerdt AJ, Middelkoop E (2007) Expression profile of proteins involved in scar formation in the healing process of full-thickness excisional wounds in the porcine model. Wound Repair Regen 15(4):482–490PubMedCrossRefGoogle Scholar
  38. 38.
    van der Slot AJ, Zuurmond AM, van den Bogaerdt AJ, Ulrich MM, Middelkoop E, Boers W, Karel Ronday H, DeGroot J, Huizinga TW, Bank RA (2004) Increased formation of pyridinoline cross-links due to higher telopeptide lysyl hydroxylase levels is a general fibrotic phenomenon. Matrix Biol 23(4):251–257PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang F, Laiho M (2003) On and off: proteasome and TGF-β signaling. Exp Cell Res 291:275–281PubMedCrossRefGoogle Scholar
  40. 40.
    Attisano L, Wotton L (2002) Signal transduction by the TGF-β super-family. Science 296:1646–1647PubMedCrossRefGoogle Scholar
  41. 41.
    Ju-lin X, Shao-hai Q, Tian-zeng T, Bin H, Jing-ming T, Ying-bin X, Xu-sheng L, Bin S, Hui-zhen L, Yong H (2009) Effect of asiaticoside on hypertrophic scar in the rabbit ear model. J Cutan Pathol 36:234–239PubMedCrossRefGoogle Scholar
  42. 42.
    Huang L, Chen CH (2009) Proteasome regulators: activators and inhibitors. Curr Med Chem 16(8):931–939PubMedCrossRefGoogle Scholar
  43. 43.
    Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 10(2):157–172PubMedCrossRefGoogle Scholar
  44. 44.
    Wilgus TA, Vodovotz Y, Vittadini E, Clubbs EA, Oberyszyn TM (2003) Reduction of scar formation in full-thickness wounds with topical celecoxib treatment. Wound Repair Regen 11:25–34PubMedCrossRefGoogle Scholar
  45. 45.
    Muscara MN, McKnight W, Asfaha S, Wallace JL (2000) Wound collagen deposition in rats: effects of an NO-NSAID and a selective COX-2 inhibitor. Br J Pharmacol 129:681–686PubMedCrossRefGoogle Scholar
  46. 46.
    Wilgus TA, Bergdall VK, Tober KL, Hill KJ, Mitra S, Flavahan NA, Oberyszyn TM (2004) The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 165(3):753–761PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Z, Qin DL, Wan JY, Zhou QX, Xiao SH, Wu K (2008) Effects of asiaticoside on the balance of inflammatory factors of mouse’s acute lung injury induced by LPS. Zhong Yao Cai 31(4):547–549 (in Chinese)PubMedGoogle Scholar
  48. 48.
    Shukla A, Rasik AM, Dhawan BN (1999) Asiaticoside-induced elevation of antioxidant levels in healing wounds. Phytother Res 13:50–54PubMedCrossRefGoogle Scholar
  49. 49.
    Hong SS, Kim JH, Li H, Shim CK (2005) Advanced formulation and pharmacological activity of hydrogel of the titrated extract of C. asiatica. Arch Pharm Res 28:502–508PubMedCrossRefGoogle Scholar
  50. 50.
    Shetty BS, Udupa SL, Udupa AL, Somayaji SN (2006) Effect of Centella asiatica (Umbelliferae) on normal and dexamethasone-suppressed wound healing in Wistar Albino rats. Int J Low Extrem Wounds 5:137–143PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang T, Rong XZ, Yang RH, Li TZ, Xu YB (2006) Effect of asiaticoside on the expression of transforming growth factor-beta mRNA and matrix metalloproteinases in hypertrophic scars. Nan Fang Yi Ke Da Xue Xue Bao 26(1):67–70 (in Chinese)PubMedGoogle Scholar
  52. 52.
    Maquart FX, Bellon G, Gillery P, Wegrowski Y, Borel JP (1990) Stimulation of collagen synthesis in fibroblast cultures by a triterpene extracted from Centella asiatica. Connect Tissue Res 24(2):107–120PubMedCrossRefGoogle Scholar
  53. 53.
    Bonte F, Dumas M, Chaudagne C, Meybeck A (1994) Influence of asiatic acid, madecassic acid, and asiaticoside on human collagen I synthesis. Planta Med 60(2):133–135PubMedCrossRefGoogle Scholar
  54. 54.
    Lu L, Ying K, Wei S, Fang Y, Liu Y, Lin H, Ma L, Mao Y (2004) Asiaticoside induction for cell-cycle progression, proliferation and collagen synthesis in human dermal fibroblasts. Int J Dermatol 43(11):801–807PubMedCrossRefGoogle Scholar
  55. 55.
    Atiyeh BS (2007) Nonsurgical management of hypertrophic scars: evidence-based therapies, standard practices, and emerging methods. Aesthetic Plast Surg 31:468–492 (discussion 493–494)PubMedCrossRefGoogle Scholar
  56. 56.
    Kimura Y, Sumiyoshi M, Samukawa K, Satake N, Sakanaka M (2008) Facilitating action of asiaticoside at low doses on burn wound repair and its mechanism. Eur J Pharm 584:415–423CrossRefGoogle Scholar
  57. 57.
    Ullah MO, Sultana S, Haque A, Tasmin S (2009) Antimicrobial, cytotoxic and antioxidant activity of Centella asiatica. Eur J Sci Res 30(2):260–264Google Scholar
  58. 58.
    Qi SH, Xie JL, Pan S, Xu YB, Li TZ, Tang JM, Liu XS, Shu B, Liu P (2007) Effects of asiaticoside on the expression of SMAD protein by normal skin fibroblasts and hypertrophic scar fibroblasts. Clin Exp Dermatol 33:171–175CrossRefGoogle Scholar
  59. 59.
    Lee J, Jung E, Kim Y, Park J, Park J, Hong S, Kim J, Hyun C, Kim YS, Park D (2006) Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent SMAD signaling. Planta Med 72(4):324–328PubMedCrossRefGoogle Scholar
  60. 60.
    Yun KJ, Kima JY, Kima JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee K (2008) Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-κB inactivation in RAW 264.7 macrophages: Possible involvement of the IKK and MAPK pathways. Int Immunopharmacol 8:431–441PubMedCrossRefGoogle Scholar
  61. 61.
    Procopio A, Alcaro S, Nardi M, Oliverio M, Ortuso F, Sacchetta P, Pieragostino D, Sindona G (2009) Synthesis, biological evaluation, and molecular modeling of oleuropein and its semisynthetic derivatives as cyclooxygenase inhibitors. J Agric Food Chem 57(23):11161–11167PubMedCrossRefGoogle Scholar
  62. 62.
    Beauchamp GK, Keast RS, Morel D, Lin J, Pika J (2005) Phytochemistry: ibuprofen-like activity in extra-virgin olive oil. Nature 437:45–46PubMedCrossRefGoogle Scholar
  63. 63.
    de la Puerta R, Martinez-Dominguez E, Ruiz-Gutierrez V (2000) Effect of minor components of virgin olive oil on topical anti-inflammatory assays. Z Naturforsch C 55(9–10):814–819PubMedGoogle Scholar
  64. 64.
    Puel C (2004) Olive oil and its main phenolic micronutrient (oleuropein) prevent inflammation-induced bone loss in the ovariectomised rat. Br J Nutr 92(1):119–127PubMedCrossRefGoogle Scholar
  65. 65.
    Visioli F, Bogani P, Grande S, Galli C (2004) Olive oil and oxidative stress. Grasas Aceites 55(1):66–75CrossRefGoogle Scholar
  66. 66.
    Zhang Z, Li XJ, Liu Y, Zhang X, Li YY, Xu WS (2007) Recombinant human decorin inhibits cell proliferation and downregulates TGF-beta1 production in hypertrophic scar fibroblasts. Burns 33(5):634–641PubMedCrossRefGoogle Scholar
  67. 67.
    van der Veer W, Bloemen MCT, Ulrich MMW, Molema G, van Zuijlen PP, Middelkoop E, Niessen FB (2009) Potential cellular and molecular causes of hypertrophic scar formation. Burns 35(1):15–29PubMedCrossRefGoogle Scholar
  68. 68.
    Puig A, Anton GMJ, Mangues M (2007) A new decorin-like tetrapeptide for optimal organization of collagen fibres. IFSCC Magazine 10(4):309Google Scholar
  69. 69.
    Wess TJ (2005) Collagen fibril form and function. Adv Protein Chem 70:341–374PubMedCrossRefGoogle Scholar
  70. 70.
    Liu X, Wu H, Byrne M, Krane S, Jaenisch R (1997) Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94(5):1852–1856PubMedCrossRefGoogle Scholar
  71. 71.
    Hayakawa T, Hashimoto Y, Myokei Y, Aoyama H, Izawa Y (1979) Changes in type of collagen during the development of human post-burn hypertrophic scars. Clin Chim Acta 93(1):119–125PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang K, Garner W, Cohen L, Rodriguez J, Phan S (1995) Increased types I and III collagen and transforming growth factor-beta 1mRNA and protein in hypertrophic burn scar. J Invest Dermatol 104(5):750–754PubMedCrossRefGoogle Scholar
  73. 73.
    Scott PG, Dodd CM, Ghahary A, Shen YJ, Tredget EE (1998) Fibroblasts from post-burn hypertrophic scar tissue synthesize less decorin than normal dermal fibroblasts. Clin Sci 94(5):541–547PubMedGoogle Scholar
  74. 74.
    Romanic AM, Adachi E, Hojima Y, Engel J, Prockop DJ (1992) Polymerization of pNcollagen I and copolymerization of pNcollagen I with collagen. I. A kinetic, thermodynamic, and morphologic study. J Biol Chem 267(31):22265–22271PubMedGoogle Scholar
  75. 75.
    van der Slot-Verhoeven AJ, van Dura EA, Attema J, Blauw B, DeGroot J, Huizinga TW, Zuurmond AM, Bank RA (2005) The type of collagen cross-link determines the reversibility of experimental skin fibrosis. Biochim Biophys Acta 1740(1):60–67PubMedCrossRefGoogle Scholar
  76. 76.
    Wan KC, Chan HP, Hung LK, Wu HT (2002) Effects of antioxidants on pyridinoline cross-link formation in culture supernatants of fibroblasts from normal skin and hypertrophic scars. Clin Exp Dermatol 27:507–512PubMedCrossRefGoogle Scholar
  77. 77.
    Ko KS, Arora PD, McCulloch CAG (2001) Cadherins mediate intercellular mechanical signaling in fibroblasts by activation of stretch-sensitive calcium-permeable channels. J Biol Chem 276:35967–35977PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC and International Society of Aesthetic Plastic Surgery 2010

Authors and Affiliations

  1. 1.Plastic Surgery DepartmentUniversity of WitwatersrandJohannesburgSouth Africa
  2. 2.IrvineUSA

Personalised recommendations