Advertisement

Prenatal maternal stress effects on the development of primate social behavior

  • Oliver SchülkeEmail author
  • Julia Ostner
  • Andreas Berghänel
Review
Part of the following topical collections:
  1. An evolutionary perspective on the development of primate sociality

Abstract

Prenatal developmental plasticity in response to various environmental and social adversities can affect multiple aspects of offspring phenotype including social behavior strategies with effects that can last into adulthood. Here, we (1) identify adaptive social behavior strategies and their underlying mechanisms as potential targets of developmental plasticity in primates, (2) derive predictions about social behavior outcomes of prenatal adversity from different types of evolutionary models, (3) review the primate evidence for prenatal stress effects on offspring cognitive function, social, and non-social behavior, and (4) discuss avenues for future research. The scarce evidence currently available points towards increased distress behavior, particularly in infant offspring, and reductions of activity, exploration, and affiliative behavior in response to experimental prenatal adversity. Not all effects are stable, the results do not replicate well, and, for the most part, the current data cannot be used to test predictions of evolutionary models because relevant aspects of social behavior were not quantified and not assessed in the complex social environments they evolved for. More comprehensive research in developmental plasticity needs to incorporate sex differences and the interaction of effects from different sensitive periods including adolescence. Moreover, future research needs to assess the role of social buffering in mediating intergenerational effects and trade-offs between the pace of life and social cognitive performance.

Keywords

Behavioral plasticity Early adversity Life history Pace-of-life syndrome Social buffering 

Notes

Acknowledgments

We thank Anja Widdig and Federica Amici for the invitation to contribute to the topical collection on Primate Social Development, Melanie Dammhahn for sharing thoughts on POLS in the context of prenatal stress effects, two anonymous reviewers for very constructive comments, and members of the DFG Research Unit FOR 2136 Sociality and Health in Primates as well as members of the Leibniz Science Campus Primate Cognition for discussion.

References

  1. Alberts SC (2012) Magnitude and sources of variation in male reproductive performance. In: Mitani JC, Call J, Kappeler PM, Palombit RA, Silk JB (eds) The evolution of primate societies. The University of Chicago Press, Chicago, pp 412–431Google Scholar
  2. Alberts SC, Altmann J (1995a) Balancing costs and opportunities: dispersal in male baboons. Am Nat 145:279–306Google Scholar
  3. Alberts SC, Altmann J (1995b) Preparation and activiation: determinants of age at reproductive maturity in male baboons. Behav Ecol Sociobiol 36:397–406Google Scholar
  4. Almeling L, Hammerschmidt K, Sennhenn-Reulen H, Freund AM, Fischer J (2016) Motivational shifts in aging monkeys and the origins of social selectivity. Curr Biology 26:1744–1749PubMedGoogle Scholar
  5. Amici F, Kulik L, Langos D, Widdig A (2019) Growing into adulthood—a review on sex differences in the development of sociality across macaques. Behav Ecol Sociobiol 73:18.  https://doi.org/10.1007/s00265-018-2623-2 CrossRefGoogle Scholar
  6. Archie EA, Tung J, Clark M, Altmann J, Alberts SC (2014) Social affiliation matters: both same-sex and opposite-sex relationships predict survival in wild female baboons. Proc R Soc B 281:20141261.  https://doi.org/10.1098/rspb.2014.1261 CrossRefPubMedGoogle Scholar
  7. Arnstein AFT (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10:410–422Google Scholar
  8. Bardi M, Huffman MA (2005) Maternal behavior and maternal stress are associated with infant behavioral development in macaques. Dev Psychobiol 48:1–9.  https://doi.org/10.1002/dev.20111 CrossRefGoogle Scholar
  9. Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261:412–417PubMedGoogle Scholar
  10. Barker DJP, Osmond C (1986) Diet and coronary heart disease in England and Wales during and after the second world war. J Epidemiol Commun H 40:37–44Google Scholar
  11. Bateson P, Barker D, Clutton-Brock T et al (2004) Developmental plasticity and human health. Nature 430:419PubMedGoogle Scholar
  12. Bateson P, Gluckman P, Hanson M (2014) The biology of developmental plasticity and the predictive adaptive response hypothesis. J Physiol 592:2357–2368PubMedPubMedCentralGoogle Scholar
  13. Bauman MD, Iosif AM, Smith SEP, Bregere C, Amaral DG, Patterson PH (2014) Activation of the maternal immune system during pregnancy alters behavioral development of rhesus monkey offspring. Biol Psychiatry 75:332–341PubMedGoogle Scholar
  14. Belsky J, Ruttle PL, Boyce WT, Armstrong JM, Essex MJ (2015) Early adversity, elevated stress physiology, accelerated sexual maturation, and poor health in females. Dev Psychol 51:816–822PubMedPubMedCentralGoogle Scholar
  15. Berghänel A, Ostner J, Schröder U, Schülke O (2011a) Social bonds predict future cooperation in male barbary macaques, Macaca sylvanus. Anim Behav 81:1109–1116Google Scholar
  16. Berghänel A, Ostner J, Schülke O (2011b) Coalitions destabilize dyadic dominance relationships in male barbary macaques (Macaca sylvanus). Behaviour 148:1256–1274Google Scholar
  17. Berghänel A, Schülke O, Ostner J (2015) Locomotor play drives motor skill acquisition at the expense of growth: a life history trade-off. Sci Adv 1:e1500451PubMedPubMedCentralGoogle Scholar
  18. Berghänel A, Heistermann M, Schülke O, Ostner J (2016) Prenatal stress effects in a wild, long-lived primate: predictive adaptive responses in an unpredictable environment. Proc R Soc B 283:20161304.  https://doi.org/10.1098/rspb.2016.1304 CrossRefPubMedGoogle Scholar
  19. Berghänel A, Heistermann M, Schülke O, Ostner J (2017) Prenatal stress accelerates offspring growth to compensate for reduced maternal investment across mammals. P Natl Acad Sci USA 114:E10658–E10666Google Scholar
  20. Bergman TJ, Beehner JC, Cheney DL, Seyfarth RM (2003) Hierarchical classification by rank and kinship in baboons. Science 302:1234–1236PubMedGoogle Scholar
  21. Bernstein I (1976) Dominance, aggression and reproduction in primate societies. J Theor Biol 60:459–472PubMedGoogle Scholar
  22. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368PubMedGoogle Scholar
  23. Bissonnette A, Perry S, Barrett L, Mitani JC, Flinn M, Gavrilets S, de Waal FBM (2015) Coalitions in theory and reality: a review of pertinent variables and processes. Behaviour 152:1–56Google Scholar
  24. Blair C, Kuzawa CW, Willoughby MT (2019) The development of executive function in early childhood is inversely related to change in body mass index: evidence for an energetic tradeoff? Dev Sci 18:e12860Google Scholar
  25. Blanc J, Rahill G, Spruill TM, Jean-Louis G, Mouchenik Y (2019) Association between prenatal exposure to the Haiti 2010 earthquake, consequent maternal PTSD and autistic symptoms in offspring. Europ J Trauma Dissociation.  https://doi.org/10.1016/j.ejtd.2019.02.001
  26. Bradbury J, Vehrencamp SL (1998) Principles of animal communication. Sinauer Press, Sunderland, MAGoogle Scholar
  27. Brent LN, Heilbronner SR, Horvath JE, Gonzalez-Martinez J, Ruiz-Lambides A, Robinson AG, Skene JH, Platt ML (2013) Genetic origins of social networks in rhesus macaques. Sci Rep 3:1042PubMedPubMedCentralGoogle Scholar
  28. Brent LN, Chang SWC, Gariépy J-F, Platt M (2014) The neuroethology of friendship. Ann N Y Acad Sci 1316:1–17PubMedGoogle Scholar
  29. Briseno-Jaramillo M, Ramos-Fernández G, Palacios-Romo TM, Sosa-López JR, Lemasson A (2018) Age and social affinity effects on contact call interactions in free-ranging spider monkeys. Behav Ecol Sociobiol 72:192.  https://doi.org/10.1007/s00265-018-2615-2 CrossRefGoogle Scholar
  30. Brunton PJ (2013) Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring. Reproduction 146:R175–R189PubMedGoogle Scholar
  31. Buffa G, Dahan S, Sinclair I, St-Pierre M, Roofigari N, Mutran D, Rondeau JJ, Dancause KN (2018) Prenatal stress and child development: a scoping review of research in low- and middle-income countries. PLoS One 13:e0207235PubMedPubMedCentralGoogle Scholar
  32. Careau V, Réale D, Humphries MM, Thomas Donald W (2010) The pace of life under artificial selection: personality, energy expenditure, and longevity are correlated in domestic dogs. Am Nat 175:753–758PubMedGoogle Scholar
  33. Chang S, Brent LJN, Adams G, Klein J, Pearson J, Watson K, Platt M (2013) Neuroethology of primate social behavior. P Natl Acad Sci USA 110:10387–10394Google Scholar
  34. Chapais B (1995) Alliances as a means of competition in primates: evolutionary, developmental, and cognitive aspects. Yearb Phys Anthropol 38:115–136Google Scholar
  35. Cheney DL, Seyfarth RM, Silk JB (1995) The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: evidence for causal reasoning? J Comp Psychol 109:134–141PubMedGoogle Scholar
  36. Cheney DL, Silk JB, Seyfarth RM (2016) Network connections, dyadic bonds and fitness in wild female baboons. R Soc Open Sci 3:160255.  https://doi.org/10.1098/rsos.160255 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Clarke AS, Schneider ML (1993) Prenatal stress has long-term effects on behavioral responses to stress in juvenile rhesus monkeys. Dev Psychobiol 26:293–304PubMedGoogle Scholar
  38. Clarke AS, Schneider ML (1997) Effects of prenatal stress on behavior in adolescent rhesus monkeys. Ann N Y Acad Sci 807:490–491PubMedGoogle Scholar
  39. Clarke AS, Bergholz A, Schneider T, Mary L (1996) Maternal gestational stress alters adaptive and social behavior in adolescent rhesus monkey offspring. Infant Behav Dev 19:451–461Google Scholar
  40. Coe CL, Lubach GR (2008) Fetal programming - prenatal origins of health and illness. Curr Dir Psychol Sci 17:36–41Google Scholar
  41. Coe CL, Lulbach GR, Schneider ML (2002) Prenatal disturbance alters the size of the corpus callosum in young monkeys. Dev Psychobiol 41:178–185PubMedGoogle Scholar
  42. Coe CL, Kramer M, Czéh B, Gould E, Reeves AJ, Kirschbaum C, Fuchs E (2003) Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol Psychiatry 54:1025–1034PubMedGoogle Scholar
  43. Connor RC (2007) Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals. Philos Trans R Soc B 362:587–602Google Scholar
  44. Crockford C, Deschner T, Wittig RM (2018) The role of oxytocin in social buffering: what do primate studies add? Curr Top Behav Neurosci 35:155–173.  https://doi.org/10.1007/7854_2017_12 CrossRefPubMedGoogle Scholar
  45. Cui J, Mistur EJ, Wei C, Lansford JE, Putnick DL, Bornstein MH (2018) Multilevel factors affecting early socioemotional development in humans. Behav Ecol Sociobiol 72:172.  https://doi.org/10.1007/s00265-018-2580-9 CrossRefGoogle Scholar
  46. Dammhahn M, Dingemanse NJ, Niemelä PT, Réale D (2018) Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology and life history. Behav Ecol Sociobiol 72:62.  https://doi.org/10.1007/s00265-018-2473-y CrossRefGoogle Scholar
  47. Dantzer R (2004) Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 500:399–411PubMedGoogle Scholar
  48. Davis EP, Sandman CA (2010) The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev 81:131–148PubMedPubMedCentralGoogle Scholar
  49. Davis EP, Stout SA, Molet J, Vegetabile B, Glynn LM, Sandman CA, Heins K, Stern H, Baram TZ (2017) Exposure to unpredictable maternal sensory signals influences cognitive development across species. P Natl Acad Sci USA 114:10390–11039Google Scholar
  50. de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ (2010) Prenatal undernutrition and cognitive function in late adulthood. P Natl Acad Sci USA 107:16881–16886Google Scholar
  51. de Waal FBM (1992) Aggression as a well-integrated part of primate social relationships: a critique of the Seville statement on violence. In: Silverberg J, Gray J (eds) Aggression and peacefulness in humans and other primates. Oxford University Press, Oxford, pp 37–56Google Scholar
  52. de Waal FBM, Luttrell LM (1989) Toward a comparative socioecology of the genus Macaca: different dominance styles in rhesus and stumptailed macaques. Am J Primatol 19:83–109Google Scholar
  53. De Witt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81Google Scholar
  54. Deaner RO, Khera AV, Platt ML (2005) Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr Biol 15:543–548PubMedGoogle Scholar
  55. Del Giudice M (2014a) Early stress and human behavioral development: emerging evolutionary perspectives. J Dev Orig Hlth Dis 5:270–280Google Scholar
  56. Del Giudice M (2014b) Life history plasticity in humans: the predictive value of early cues depends on the temporal structure of the environment. Proc R Soc B 281:20132222PubMedGoogle Scholar
  57. Dettmer AM, Murphy AM, Guitarra D, Slonecker E, Suomi SJ, Rosenberg KL, Novak MA, Meyer JS, Hinde K (2018) Cortisol in neonatal mother’s milk predicts later infant social and cognitive functioning in rhesus monkeys. Child Dev 89:525–538PubMedGoogle Scholar
  58. Dingemanse NJ, Kazem AJ, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–89PubMedGoogle Scholar
  59. Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev 86:97–116PubMedGoogle Scholar
  60. Dodson S (1989) Predator-induced reaction norms: cyclic changes in shape and size can be protective. BioScience 39:447–452Google Scholar
  61. Douhard M, Plard F, Gaillard J-M, Capron G, Delorme D, Klein F, Duncan P, Loe LE, Bonenfant C (2014) Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate. Proc R Soc B 281:20140276PubMedGoogle Scholar
  62. Dunbar RIM (1992) Time: a hidden constraint on the behavioural ecology of baboons. Behav Ecol Sociobiol 31:35–49Google Scholar
  63. Duthie L, Reynolds RM (2013) Changes in the maternal hypothalamic-pituitary-adrenal axis in pregnancy and postpartum: influences on maternal and fetal outcomes. Neuroendocrinology 98:106–115PubMedGoogle Scholar
  64. Ebenau A, von Borell C, Penke L, Ostner J, Schülke O (2019) Personality homophily affects male social bonding in wild Assamese macaques (Macaca assamensis). Anim Behav (published online, doi: https://doi.org/10.1101/520064)  https://doi.org/10.1101/520064)
  65. Eisenegger C, Haushofer J, Fehr E (2011) The role of testosterone in social interaction. Trends Cogn Sci 15:263–271PubMedGoogle Scholar
  66. Ellis BJ, Del Giudice M (2019) Developmental adaptation to stress: an evolutionary perspective. Annu Rev Psychol 70:111–139PubMedGoogle Scholar
  67. Frankenhuis W, E., Nettle D, Dall SR (2019) A case for environmental statistics of early-life effects. Philos Trans R Soc B 374:20180110Google Scholar
  68. Franz M, McLean E, Tung J, Altmann J, Alberts SC (2015) Self-organizing dominance hierarchies in a wild primate population. Proc R Soc B 282:20151512PubMedGoogle Scholar
  69. Freeberg TM, Dunbar RIM, Ord TJ (2012) Social complexity as a proximate and ultimate factor in communicative complexity. Philos Trans R Soc B 367:1785–1801Google Scholar
  70. Fröhlich M, Hobaiter C (2018) The development of gestural communication in great apes. Behav Ecol Sociobiol 72:194Google Scholar
  71. Fruteau C, Voelkl B, van Damme E, Noë R (2009) Supply and demand determine the market value of food providers in wild vervet monkeys. P Natl Acad Sci USA 106:12007–12012Google Scholar
  72. Garber PA, Dolins FL (2014) Primate spatial strategies and cognition: introduction to this special issue. Am J Primatol 76:393–398PubMedGoogle Scholar
  73. Gilby IC, Brent LJN, Wroblewski EE, Rudicell RS, Hahn BH, Goodall J, Pusey AE (2013) Fitness benefits of coalitionary aggression in male chimpanzees. Behav Ecol Sociobiol 67:373–381PubMedGoogle Scholar
  74. Glover V (2011) Prenatal stress and the origins of psychopathology: an evolutionary perspective. J Child Psychol Psychiatry 52:356–367PubMedGoogle Scholar
  75. Gluckman PD, Hanson MA, Spencer HG (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol 20:527–533PubMedGoogle Scholar
  76. Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success. University of Chicago Press, Chicago, pp 454–471Google Scholar
  77. Groothuis TG, Maestripieri D (2013) Parenatal influneces on offspring personality traits in oviparous and placental vertebrates. In: Carere C, Maestriperi D (eds) Animal personality - behavior, physiology and evolution. University of Chicago Press, Chicago, pp 317–352Google Scholar
  78. Groothuis TGG, Taborsky B (2015) Introducing biological realism into the study of developmental plasticity in behaviour. Front Zool 12:S6PubMedPubMedCentralGoogle Scholar
  79. Gutleb DR, Roos C, Noll A, Ostner J, Schülke O (2017) COMT Val158Met moderates the link between rank and aggression in a non-human primate. Genes Brain Behav 17:e12443PubMedGoogle Scholar
  80. Hales CN, Barker DJP (2001) The thrifty phenotype hypothesis: type 2 diabetes Brit Med Bull 60:5-20Google Scholar
  81. Hämäläinen A, Immonen E, Tarka M, Schuett W (2018) Evolution of sex-specific pace-of-life syndromes: causes and consequences. Behav Ecol Sociobiol 72:50Google Scholar
  82. Hanson KN, Gluckman PD (2014) Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev 94:1027–1076PubMedPubMedCentralGoogle Scholar
  83. Hardy ICW, Briffa M (2013) Animal contests. Cambridge University Press, CambridgeGoogle Scholar
  84. Hauser J, Dettling-Artho A, Pilloud S, Maier C, Knapman A, Feldon J, Pryce CR (2007) Effects of prenatal dexamethasone treatment on postnatal physical, endocrine, and social development in the common marmoset monkey. Endocrinology 148:1813–1822PubMedGoogle Scholar
  85. Hauser J, Knapmann A, Zürcher NR et al (2008) Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys. Endocrinology 149:6343–6355PubMedGoogle Scholar
  86. Hendry AP (2015) Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J Hered 107:25–41PubMedGoogle Scholar
  87. Hennessy MB, Deak T, Schiml PA (2014) Sociality and sickness: have cytokines evolved to serve social functions beyond times of pathogen exposure? Brain Behav Immun 37:15–20PubMedGoogle Scholar
  88. Hennessy MB, Kaiser S, Tiedtke T, Sachser N (2015) Stability and change: stress responses and the shaping of behavioral phenotypes over the life span. Front Zool 12:S18.  https://doi.org/10.1186/1742-9994-12-s1-s18 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Hinde K, Capitanio JP (2010) Lactational programming? Mother’s milk energy predicts infant behavior and temperament in rhesus macaques (Macaca mulatta). Am J Primatol 72:522–529PubMedPubMedCentralGoogle Scholar
  90. Hinde K, Skibiel AL, Foster AB, Del Rosso L, Mendoza SP, Capitanio JP (2015) Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav Ecol 26:269–281PubMedGoogle Scholar
  91. Hoogenboom MO, Metcalfe NB, Armstrong JD, Groothuis TGG (2012) The growth benefits of aggressive behavior vary with individual metabolism and resource predictability. Behav Ecol 24:253–261Google Scholar
  92. Hostinar CE, Gunnar MR (2013) The developmental effects of early life stress: an overview of current theoretical frameworks. Curr Dir Psychol Sci 22:400–406PubMedPubMedCentralGoogle Scholar
  93. Huebner F, Fichtel C, Kappeler Peter M (2018) Linking cognition with fitness in a wild primate: fitness correlates of problem-solving performance and spatial learning ability. Philos Trans R Soc B 373:20170295Google Scholar
  94. Huttunen MO, Niskanen P (1978) Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry 35:429–431PubMedGoogle Scholar
  95. Isbell LA, van Vuren D (1996) Differential costs of locational and social dispersal and their consequences for female group-living primates. Behaviour 133:1–36Google Scholar
  96. Janson C (2007) Experimental evidence for route integration and strategic planning in wild capuchin monkeys. Anim Cogn 10:341–356PubMedGoogle Scholar
  97. Joly M, Micheletta J, De Marco A, Langermans JA, Sterck EHM, Waller BM (2017) Comparing physical and social cognitive skills in macaque species with different degrees of social tolerance. Proc R Soc B 284:20162738PubMedGoogle Scholar
  98. Kaiser S, Sachser N (2009) Effects of prenatal social stress on offspring development: pathology or adaptation? Curr Dir Psychol Sci 18:118–121Google Scholar
  99. Kaiser S, Schwerdt B, Siegeler K, Sachser N (2015) Social instability during pregnancy and lactation alters female wild cavy offsprings’ endocrine status and behaviour later in life. Behaviour 152:837–859Google Scholar
  100. Kalbitzer U, Bergstrom ML, Carnegie SD, Wikberg EC, Kawamura S, Campos FA, Jack KM, Fedigan LM (2017) Female sociality and sexual conflict shape offspring survival in a Neotropical primate. P Natl Acad Sci USA 114:1892–1897Google Scholar
  101. Kapoor A, Matthews SG (2005) Short periods of prenatal stress affect growth, behaviour and hypothalamo-pituitary-adrenal axis activity in male guinea pig offspring. J Physiol 566:967–977PubMedPubMedCentralGoogle Scholar
  102. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN, Kenny LC, Mortensen PB (2008) Higher risk of off-spring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 65:146–152PubMedGoogle Scholar
  103. King S, Dancause K, Turcotte-Tremblay AM, Veru F, Laplante DP (2012) Using natural disasters to study the effects of prenatal maternal stress on child health and development. Birth Defect Res 96:273–288Google Scholar
  104. Kinsella MT, Monk C (2009) Impact of maternal stress, depression and anxiety on fetal neurobehavioral development. Clin Obstet Gynecol 52:425–440PubMedPubMedCentralGoogle Scholar
  105. Kiyokawa Y, Hennessy MB (2018) Comparative studies of social buffering: a consideration of approaches, terminology, and pitfalls. Neurosci Biobehav Rev 86:131–141PubMedGoogle Scholar
  106. Konečná M, Lhota S, Weiss A, Urbánek T, Adamová T, Pluháček J (2008) Personality in free-ranging Hanuman langur (Semnopithecus entellus) males: subjective ratings and recorded behavior. J Comp Psychol 122:379–389PubMedGoogle Scholar
  107. Konečná M, Weiss A, Lhota S, Wallner B (2012) Personality in barbary macaques (Macaca sylvanus): temporal stability and social rank. J Res Pers 46:581–590Google Scholar
  108. Korstjens A, Lugo Verhoeckx I, Dunbar R (2006) Time as a constraint on group size in spider monkeys. Behav Ecol Sociobiol 60:683–694Google Scholar
  109. Koski SE, Burkart JM (2015) Common marmosets show social plasticity and group-level similarity in personality. Sci Rep 5:8878PubMedPubMedCentralGoogle Scholar
  110. Kuzawa CW, Quinn EA (2007) Developmental origins of adult function and health: evolutionary hypotheses. Annu Rev Anthropol 38:131–147Google Scholar
  111. Laplante DP, Brunet A, Schmitz N, Ciampi A, King S (2008) Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5-year-old children. J Am Acad Child Psy 47:1063–1072Google Scholar
  112. Lea AJ, Altmann J, Alberts SC, Tung J (2015) Developmental constraints in a wild primate. Am Nat 185:809–821PubMedPubMedCentralGoogle Scholar
  113. Lea AJ, Tung J, Archie EA, Alberts SC (2017) Developmental plasticity research in evolution and human health - response to commentaries. Evol Med Public Health 2017:201–205PubMedGoogle Scholar
  114. Lea AJ, Akinyi MY, Nyakundi R, Mareri P, Nyundo F, Kariuki T, Alberts SC, Archie EA, Tung J (2018) Dominance rank-associated gene expression is widespread, sex-specific, and a precursor to high social status in wild male baboons. P Natl Acad Sci USA 115:E12163–E12171Google Scholar
  115. Lemaître J-F, Berger V, Bonenfant C, Douhard M, Gamelon M, Plard F, Gaillard J-M (2015) Early-late life trade-offs and the evolution of ageing in the wild. Proc R Soc B 282:20150209.  https://doi.org/10.1098/rspb.2015.0209 CrossRefPubMedGoogle Scholar
  116. Li J, Olsen J, Vestergaard M, Oble C (2010) Attention-deficit/hyperactivity disorder in the offspring following prenatal maternal bereavement: a nationwide follow-up study in Denmark. Eur Child Adolesc Psychiatry 10:747–753Google Scholar
  117. Li N, Wang Y, Zhao X, Gao Y, Song M, Yu L, Wang L, Li N, Chen Q, Li Y, Cai J, Wang X (2015) Long-term effect of early-life stress from earthquake exposure on working memory in adulthood. Neuropsychiatr Dis Treat 11:2959–2965PubMedPubMedCentralGoogle Scholar
  118. Lonsdorf EV, Stanton MA, Murray CM (2018) Sex differences in maternal sibling-infant interactions in wild chimpanzees. Behav Ecol Sociobiol 72:117.  https://doi.org/10.1007/s00265-018-2531-5 CrossRefGoogle Scholar
  119. Lupien SJ, McEwen BS, Gunnar MR, Heim C (2009) Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci 10:434–445PubMedGoogle Scholar
  120. MacLean EL, Merritt DJ, Brannon EM (2008) Social complexity predicts transitive reasoning in prosimian primates. Anim Behav 76:479–486PubMedPubMedCentralGoogle Scholar
  121. Madrid JE, Mandalaywala TM, Coyne SP, Ahloy-Dallaire J, Barr CS, Maestripieri D, Parker KJ (2018) Adaptive developmental plasticity in rhesus macaques: the serotonin transporter gene interacts with maternal care to affect juvenile social behaviour. Proc R Soc B 285:20180541PubMedGoogle Scholar
  122. Maestripieri D (2009) Maternal influences on offspring growth, reproduction, and behavior in primates in: Maestripieri D, Mateo JM (eds) Maternal effects in mammals, Chicago University Press, Chicago, pp 256–291Google Scholar
  123. Maestripieri D (2018) Maternal influences on primate social development. Behav Ecol Sociobiol 72:130.  https://doi.org/10.1007/s00265-018-2547-x CrossRefGoogle Scholar
  124. Maestripieri D, Klimczuk ACE (2013) Prenatal and maternal psychosocial stress in primates: adaptive plasticity or vulnerability to pathology? In: Laviola G, Macrì S (eds) Adaptive and maladaptive aspects of developmental stress. Springer, New York, pp 45–64Google Scholar
  125. Majolo B, Lehmann J, de Bortoli VA, Schino G (2012) Fitness-related benefits of dominance in primates. Am J Phys Anthropol 147:652–660PubMedGoogle Scholar
  126. Markham AC, Gesquiere LR (2017) Costs and benefits of group living in primates: an energetic perspective. Philos Trans R Soc B 372:20160239Google Scholar
  127. Massen JJM, Sterck EHM, de Vos H (2010) Close social associations in animals and humans - functions and mechanisms of friendship. Behaviour 147:1379–1412Google Scholar
  128. Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini F, Meerlo P, Nalivaiko E, Maccari S, Sgoifo A (2009) Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev 33:191–203PubMedGoogle Scholar
  129. Maynard Smith J, Parker GA (1976) The logic of asymmetric contests. Anim Behav 24:159–175Google Scholar
  130. McFarland R, Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, Barrett L (2015) Social integration confers thermal benefits in a gregarious primate. J Anim Ecol 84:871–878PubMedGoogle Scholar
  131. McFarland R, Murphy D, Lusseau D, Henzi SP, Parker JL, Pollet TV, Barrett L (2017) The ‘strength of weak ties’ among female baboons: fitness-related benefits of social bonds. Anim Behav 126:101–106Google Scholar
  132. McGowan PO, Matthews SG (2018) Prenatal stress, glucocorticoids and developmental programming of the stress response. Endocrinology 159:69–82PubMedGoogle Scholar
  133. Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260PubMedGoogle Scholar
  134. Meyer JS, Hamel AF (2014) Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction. ILAR J 55:347–360PubMedPubMedCentralGoogle Scholar
  135. Michaelis T, Abaei A, Boretius S, Tammer R, Frahm J, Schlumbohm C, Fuchs E (2009) Intrauterine hyperexposure to dexamethasone of the common marmoset monkey revealed normal cerebral metabolite concentrations in adulthood as assessed by quantitative proton magnetic resonance spectroscopy in vivo. J Med Primatol 38:213–218PubMedGoogle Scholar
  136. Miller LE (2002) Eat or be eaten - risk sensitive foraging among primates. Cambridge University Press, CambridgeGoogle Scholar
  137. Moisiadis VG, Matthews SG (2014a) Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10:391.  https://doi.org/10.1038/nrendo.2014.73 CrossRefPubMedGoogle Scholar
  138. Moisiadis VG, Matthews SG (2014b) Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol 10:403.  https://doi.org/10.1038/nrendo.2014.74 CrossRefPubMedGoogle Scholar
  139. Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos Trans R Soc B 363:1635–1645Google Scholar
  140. Montiglio P-O, Dammhahn M, Dubuc Messier G, Réale D (2018) The pace-of-life syndrome revisited: the role of ecological conditions and natural history on the slow-fast continuum. Behav Ecol Sociobiol 72:116.  https://doi.org/10.1007/s00265-018-2526-2 CrossRefGoogle Scholar
  141. Müller-Klein N, Heistermann M, Strube C, Morbach ZM, Lilie N, Franz M, Schülke O, Ostner J (2018) Physiological and social consequences of gastrointestinal nematode infection in a nonhuman primate. Behav Ecol 30:322–335Google Scholar
  142. Muniz L, Perry S, Manson JH, Gilkenson H, Gros-Louis J, Vigilant L (2006) Father–daughter inbreeding avoidance in a wild primate population. Curr Biol 16:R156–R157PubMedGoogle Scholar
  143. Murray CM, Stanton MA, Wellens KR, Santymire RM, Heintz MR, Lonsdorf EV (2018) Maternal effects on offspring stress physiology in wild chimpanzees. Am J Primatol 80:e22525Google Scholar
  144. Mustoe AC, Taylor JH, Birnie AK, Huffman MC, French JA (2014) Gestational cortisol and social play shape development of marmosets' HPA functioning and behavioral responses to stressors. Dev Psychobiol 56:1229–1243PubMedPubMedCentralGoogle Scholar
  145. Nettle D, Bateson M (2015) Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? Proc R Soc B 282:20151005PubMedGoogle Scholar
  146. Nettle D, Frankenhuis WE, Rickard IJ (2013) The evolution of predictive adaptive responses in human life history. Proc R Soc B 280:20131343PubMedGoogle Scholar
  147. Neuenschwander R, Oberlander TF (2017) Developmental origins of self-regulation: prenatal maternal stress and psychobiological development during childhood. In: Deater-Deckard K, Panneton R (eds) Parental stress and early child development: adaptive and maladaptive outcomes. Springer, New York, pp 127–156Google Scholar
  148. Noë R, Sluijter AA (1995) Which adult male savanna baboons form coalitions? Int J Primatol 16:77–105Google Scholar
  149. O’Connor TG, Heron J, Glover V, the ALSPAC Study Team (2002) Antenatal anxiety predicts child behavioral/emotional problems independently of postnatal depression. J Am Acad Child Psy 41:1470–1477Google Scholar
  150. Ostner J, Schülke O (2014) The evolution of social bonds in primate males. Behaviour 151:871–906Google Scholar
  151. Ostner J, Schülke O (2018) Linking sociality to fitness in primates: a call for mechanisms. Adv Study Behav 50:127–175Google Scholar
  152. Ostner J, Nunn CL, Schülke O (2008) Female reproductive synchrony predicts skewed paternity across primates. Behav Ecol 19:1150–1158PubMedPubMedCentralGoogle Scholar
  153. Palmer AC (2011) Nutritionally mediated programming of the developing immune system. Adv Nutr 2:377–395PubMedPubMedCentralGoogle Scholar
  154. Paz-y-Mino-C G, Bond AB, Kamil AC, Balda RP (2004) Pinyon jays use transitive inference to predict social dominance. Nature 430:778–781PubMedGoogle Scholar
  155. Pearce E, Wlodarski R, Machin A, Dunbar RIM (2017) Variation in the β-endorphin, oxytocin, and dopamine receptor genes is associated with different dimensions of human sociality. P Natl Acad Sci USA 114:5300–5305Google Scholar
  156. Perry S, Barrett HC, Manson JH (2004) White-faced capuchin monkeys show triadic awareness in their choice of allies. Anim Behav 67:165–170Google Scholar
  157. Perry S, Godoy I, Lammers W, Lin A (2017) Impact of personality traits and early life experience on timing of emigration and rise to alpha male status for wild male white-faced capuchin monkeys (Cebus capucinus) at Lomas Barbudal Biological Reserve, Costa Rica. Behaviour 154:195–226Google Scholar
  158. Petersen MB, Aarøe L (2015) Birth weight and social trust in adulthood: evidence for early calibration of social cognition. Psychol Sci 26:1681–1692PubMedGoogle Scholar
  159. Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L (2017) Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 1654B:123–144PubMedGoogle Scholar
  160. Piquer B, Fonseca JL, Lara HE (2017) Gestational stress, placental norepinephrine transporter and offspring fertility. Reproduction 153:147–155PubMedGoogle Scholar
  161. Pryce CR, Aubert Y, Maier C, Pearce PC, Fuchs E (2011) The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset. Psychopharmacology 214:33–53PubMedGoogle Scholar
  162. Pusey A (2012) Magnitude and sources of variation in female reproductive performance. In: Mitani JC, Call J, Kappeler PM, Palombit RA, Silk JB (eds) The evolution of primate societies. The University of Chicago Press, Chicago, pp 343–366Google Scholar
  163. Ravelli G-P, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353PubMedGoogle Scholar
  164. Réale D, Garant D, Humphries Murray M, Bergeron P, Careau V, Montiglio P-O (2010) Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans R Soc B 365:4051–4063Google Scholar
  165. Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468Google Scholar
  166. Rijlaarsdam J, van Ijzendoorn MH, Verhulst FC, Jaddoe VWV, Felix JF, Tiemeier H, Bakermans-Kranenburg MJ (2016) Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation and child autistic traits: the moderating role of OXTR rs53576 genotype. Autism Res 10:430–438PubMedPubMedCentralGoogle Scholar
  167. Roberts AD, Moore CF, DeJesus OT et al (2004) Prenatal stress, moderate fetal alcohol, and dopamine system function in rhesus monkeys. Neurotoxicol Teratol 26:169–178PubMedGoogle Scholar
  168. Rodriguez-Llanes JM, Verbeke G, Finlayson C (2009) Reproductive benefits of high social status in male macaques (Macaca). Anim Behav 78:643–649Google Scholar
  169. Romero L (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255PubMedGoogle Scholar
  170. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model - a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389PubMedGoogle Scholar
  171. Rosati AG, Arre AM, Platt ML, Santos LR (2018) Developmental shifts in social cognition: socio-emotional biases across the lifespan in rhesus monkeys. Behav Ecol Sociobiol 72:163Google Scholar
  172. Roseboom T, de Rooij S, Painter R (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82:485–491PubMedGoogle Scholar
  173. Roseboom TJ, Painter RC, van Abeelen AFM, Veenendaal MVE, de Rooij SR (2011) Hungry in the womb: what are the consequences? Lessons from the Dutch famine. Maturitas 70:141–145PubMedGoogle Scholar
  174. Royauté R, Berdal MA, Garrison CR, Dochtermann NA (2018) Paceless life? A meta-analysis of the pace-of-life syndrome hypothesis. Behav Ecol Sociobiol 72:64Google Scholar
  175. Sachser N (1986) Different forms of social organization at high and low population densities in guinea pigs. Behaviour 97:253–272Google Scholar
  176. Sachser N, Kaiser S, Hennessy MB (2013) Behavioural profiles are shaped by social experience: when, how and why. Philos Trans R Soc B 368:20120344.  https://doi.org/10.1098/rstb.2012.0344 CrossRefGoogle Scholar
  177. Sachser N, Hennessy MB, Kaiser S (2018) The adaptive shaping of social behavioural phenotypes during adolescence. Biol Lett 14:20180536PubMedGoogle Scholar
  178. Sandi C, Haller J (2015) Stress and the social brain: behavioural effects and neurobiological mechanisms. Nat Rev Neurosci 16:290–304PubMedGoogle Scholar
  179. Sapolsky R (2002) Endocrinology of the stress-response. In: Becker J, Breedlove S, Crews D, McCarthy M (eds) Behavioral endocrinology, 2nd edn. The MIT Press, Cambridge, pp 409–450Google Scholar
  180. Schino G, Sciarretta M (2016) Patterns of social attention in mandrills, Mandrillus sphinx. Int J Primatol 37:752–761Google Scholar
  181. Schino G, Tiddi B, Polizzi Di Sorrentino E (2006) Simultaneous classification by rank and kinship in Japanese macaques. Anim Behav 71:1069–1074Google Scholar
  182. Schmitt CA, Di Fiore A (2015) Predation risk sensitivity and the spatial organization of primate groups: a case study using GIS in lowland woolly monkeys (Lagothrix lagotricha poeppigii). Am J Phys Anthropol 156:158–165PubMedGoogle Scholar
  183. Schneider ML (1992) Prenatal stress exposure alters postnatal behavioral expression under conditions of novelty challenge in rhesus monkey infants. Dev Psychobiol 25:529–540PubMedGoogle Scholar
  184. Schneider ML, Coe C (1993) Repeated social stress during pregnancy impairs neuromotor development of the primate infant. J Dev Behav Pediatr 14:81–87PubMedGoogle Scholar
  185. Schneider ML, Suomi SJ (1992) Neurobehavioral assessment in rhesus monkey neonates (Macaca mulatta): developmental changes, behavioral stability, and early experience. Infant Behav Dev 15:155–177Google Scholar
  186. Schneider ML, Roughton EC, Koehler AJ, Lubach GR (1999) Growth and development following prenatal stress exposure in primates: an examination of ontogenetic vulnerability. Child Dev 70:263–274PubMedGoogle Scholar
  187. Schneider ML, Moore CF, Roberts AD, Dejesus O (2001) Prenatal stress alters early neurobehavior, stress reactivity and learning in non-human primates: a brief review. Int J Biol Stress 4:183–193Google Scholar
  188. Schneider ML, Moore CF, Kraemer GW (2004) Moderate level alcohol during pregnancy, prenatal stress, or both and limbic-hypothalamic-pituitary-adrenocortical axis response to stress in rhesus monkeys. Child Dev 75:96–109PubMedGoogle Scholar
  189. Schuett W, Dall S, Royle N (2011) Pairs of zebra finches with similar ‘personalities’ make better parents. Anim Behav 81:609–618Google Scholar
  190. Schülke O, Ostner J (2012) Ecological and social influences on sociality. In: Mitani JC, Call J, Kappeler PM, Palombit RA, Silk JB (eds) The evolution of primate societies. The University of Chicago Press, Chicago, pp 195–219Google Scholar
  191. Schülke O, Bhagavatula J, Vigilant L, Ostner J (2010) Social bonds enhance reproductive success in male macaques. Curr Biol 20:2207–2210PubMedGoogle Scholar
  192. Selye H (1976) The stress of life. McGraw-Hill, New YorkGoogle Scholar
  193. Seyfarth RM, Cheney DL (2012) The evolutionary origins of friendship. Annu Rev Psychol 63:153–177PubMedGoogle Scholar
  194. Seyfarth RM, Cheney DL (2015) Social cognition. Anim Behav 103:191–202Google Scholar
  195. Shepherd SV, Deaner RO, Platt ML (2006) Social status gates social attention in monkeys. Curr Biology 16:R119–R120PubMedGoogle Scholar
  196. Sheriff MJ, Bell A, Boonstra R et al (2017) Integrating ecological and evolutionary context in the study of maternal stress. Integr Comp Biol 57:437–449PubMedPubMedCentralGoogle Scholar
  197. Silk J (1992) The patterning of intervention among male bonnet macaques: reciprocity, revenge, and loyalty. Curr Anthropol 33:318–325Google Scholar
  198. Silk JB (2002) Practice random acts of aggression and senseless acts of intimidation: the logic of status contests in social groups. Evol Anthropol 11:221–225Google Scholar
  199. Silk JB, Alberts SC, Altmann J (2003) Social bonds of female baboons enhance infant survival. Science 302:1231–1234PubMedGoogle Scholar
  200. Silk JB, Beehner JC, Bergman TJ, Crockford C, Engh AL, Moscovice LR, Wittig RM, Seyfarth RM, Cheney DL (2009) The benefits of social capital: close social bonds among female baboons enhance offspring survival. Proc R Soc Lond B 276:3099–3104Google Scholar
  201. Silk JB, Beehner JC, Bergamn TJ, Crockford C, Engh AL, Moscovice LR, Wittig RM, Seyfarth RM, Cheney DL (2010) Strong and consistent social bonds enhance the longevity of female baboons. Curr Biol 20:1359–1361PubMedGoogle Scholar
  202. Silk JB, Seyfarth RM, Cheney DL (2018) Quality versus quantity: do weak bonds enhance the fitness of female baboons? Anim Behav 140:207–211Google Scholar
  203. Simcock G, Kildea S, Elgbeili G, Laplante DP, Stapleton H, Cobham V, King S (2016) Age-related changes in the effects of stress in pregnancy on infant motor development by maternal report: the Queensland Flood Study. Dev Psychobiol 58:640–659PubMedGoogle Scholar
  204. Simcock G, Kildea S, Elgbeili G, Laplante DP, Cobham V, King S (2017) Prenatal maternal stress shapes children’s theory of mind: the QF2011 Queensland Flood Study. J Dev Orig Hlth Dis 8:483–492Google Scholar
  205. Skoluda N, Nater UM (2013) Consequences of developmental stress in humans: prenatal stress. In: Laviola G, Macrì S (eds) Adaptive and maladaptive aspects of developmental stress. Springer, New York, pp 121–146Google Scholar
  206. Snyder-Mackler N, Sanz J, Kohn JN et al (2016) Social status alters immune regulation and response to infection in macaques. Science 354:1041–1045PubMedPubMedCentralGoogle Scholar
  207. Snyder-Mackler N, Sanz J, Kohn JN, Voyles T, Pique-Regi R, Wilson ME, Barreiro LB, Tung J (2019) Social status alters chromatin accessibility and the gene regulatory response to glucocorticoid stimulation in rhesus macaques. P Natl Acad Sci USA 116:1219–1228Google Scholar
  208. Spitze K (1992) Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am Nat 139:229–247Google Scholar
  209. Sullivan EL, Grayson B, Takahashi D, Robertson N, Maier A, Bethea CL, Smith MS, Coleman K, Grove KL (2010) Chronic consumption of a high-fat diet during pregnancy causes perturbations in the serotonergic system and increased anxiety-like behavior in nonhuman primate offspring. J Neurosci 30:3826–3830PubMedPubMedCentralGoogle Scholar
  210. Sutherland S, Brunwasser SM (2018) Sex differences in vulnerability to prenatal stress: a review of the recent literature. Curr Psychiatry Rep 20:102Google Scholar
  211. Taborsky B (2016) Opening the black box of developmental experiments: behavioural mechanisms underlying long-term effects of early social experience. Ethology 122:1–17Google Scholar
  212. Taborsky B (2017) Developmental plasticity: preparing for life in a complex world. Adv Study Behav 49:49–99Google Scholar
  213. Talge NM, Neal C, Glover V, the Early Stress, Translational Research and Prevention Science Network Fetal and Neonatal Experience on Child and Adolescent Mental Health (2007) Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry 48:245–261PubMedGoogle Scholar
  214. Tao S, Dahl GE (2013) Heat stress effects during late gestation on dry cows and their calves. J Dairy Sci 96:4079–4093PubMedGoogle Scholar
  215. Tauber SC, Schlumbohm C, Schilg L, Fuchs E, Nau R, Gerber J (2006) Intrauterine exposure to dexamethasone impairs proliferation but not neuronal differentiation in the dentate gyrus of newborn common marmoset monkeys. Brain Pathol 16:209–217PubMedGoogle Scholar
  216. Tauber SC, Bunkowski S, Schlumbohm C, Rhlmann M, Fuchs E, Nau R, Gerber J (2008) No long-term effect two years after intrauterine exposure to dexamethasone on dentate gyrus volume, neuronal proliferation and differentiation in common marmoset monkeys. Brain Pathol 18:497–503PubMedGoogle Scholar
  217. Thompson NA, Cords M (2018) Stronger social bonds do not always predict greater longevity in a gregarious primate. Ecol Evol 8:1604–1614PubMedPubMedCentralGoogle Scholar
  218. Trillmich F, Günther A, Müller C, Reinhold K, Sachser N (2015) New perspectives in behavioural development: adaptive shaping of behaviour over a lifetime? Front Zool 12:S1.  https://doi.org/10.1186/1742-9994-12-S1-S1 CrossRefGoogle Scholar
  219. Tung J, Archie EA, Altmann J, Alberts SC (2016) Cumulative early life adversity predicts longevity in wild baboons. Nat Commun 7:11181.  https://doi.org/10.1038/ncomms11181 CrossRefPubMedPubMedCentralGoogle Scholar
  220. Uller T, Nakagawa S, English S (2013) Weak evidence for anticipatory parental effects in plants and animals. J Evol Biol 26:2161–2170PubMedGoogle Scholar
  221. Uno H, Eisele S, Sakai A, Shelton S, Baker E, DeJesus O, Holden J (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28:336–348PubMedGoogle Scholar
  222. van Hazebroek BCM, Wermink H, van Domburgh L, de Keijser JW, Hoeve M, Popma A (2018) Biosocial studies of antisocial behavior: a systematic review of interactions between peri/prenatal complications, psychophysiological parameters, and social risk factors. Aggress Violent Behav 47:169–188Google Scholar
  223. van Noordwijk MA, van Schaik CP (2001) Career moves: transfer and rank challenge decisions by male long-tailed macaques. Behaviour 138:359–395Google Scholar
  224. van Schaik CP (1983) Why are diurnal primates living in groups? Behaviour 87:120–144Google Scholar
  225. van Schaik CP (1989) The ecology of social relationships amongst female primates. In: Standen V, Foley RA (eds) Comparative socioecology. the behavioural ecology of humans and other mammals. Blackwell Scientific Publications, Oxford, pp 195–218Google Scholar
  226. van Schaik CP, Aureli F (2000) The natural history of valuable relationships in primates. In: Aureli F, de Waal FBM (eds) Natural conflict resolution. University of California Press, Berkeley, LA, pp 307–332Google Scholar
  227. van Schaik CP, Pandit S, Vogel E (2006) Toward a general model for male-male coalitions in primate groups. In: Kappeler P, van Schaik C (eds) Cooperation in primates and humans. Springer, Heidelberg, pp 151–172Google Scholar
  228. Varcin KJ, Alvares GA, Uljarević M, Whitehouse AJO (2017) Prenatal maternal stress events and phenotypic outcomes in autism spectrum disorder. Autism Res 10:1866–1877PubMedGoogle Scholar
  229. Veru F, Laplante DP, Luheshi G, King S (2014) Prenatal maternal stress exposure and immune function in the offspring. Stress 17:133–148PubMedGoogle Scholar
  230. von Borell C, Penke L, Weiss A (2019) Developing individual differences in primate behavior: the role of genes, environment and their interplay. Behav Ecol Sociobiol 73:20Google Scholar
  231. Walder JD, Laplante DP, Sousa-Pires A, Veru F, Brunet A, King S (2014) Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm. Psychiatry Res 219:353–360PubMedGoogle Scholar
  232. Watt PJ, Ariyomo TO (2013) Disassortative mating for boldness decreases reproductive success in the guppy. Behav Ecol 24:1320–1326Google Scholar
  233. Weinstock M (2008) The longterm behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086PubMedGoogle Scholar
  234. Weinstock M (2015) Changes induced by prenatal stress in behavior and brain morphology: can they be prevented or reversed? In: Antonelli M (ed) Perinatal programming of neurodevelopment. Springer, New York, pp 3–25Google Scholar
  235. Wells JCK (2003) The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J Theor Biol 221:143–161PubMedGoogle Scholar
  236. Wells JCK (2007) Flaws in the theory of predictive adaptive responses. Trends Endocrinol Metab 18:331–337PubMedGoogle Scholar
  237. Wells JCK (2010) Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol 22:1–17PubMedGoogle Scholar
  238. Wells JCK (2019) Developmental plasticity as adaptation: adjusting to the external environment under the imprint of maternal capital. Philos Trans R Soc B 374:20180122Google Scholar
  239. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, New YorkGoogle Scholar
  240. Whiten A, van de Waal E (2018) The pervasive role of social learning in primate lifetime development. Behav Ecol Sociobiol 72:80PubMedPubMedCentralGoogle Scholar
  241. Widdig A, Streich WJ, Tembrock G (2000) Coalition formation among male barbary macaques (Macaca sylvanus). Am J Primatol 50:37–51PubMedGoogle Scholar
  242. Willette AA, Lubach GR, Coe CL (2007) Environmental context differentially affects behavioral, leukocyte, cortisol, and interleukin-6 responses to low doses of endotoxin in the rhesus monkey. Brain Behav Immun 21:807–815PubMedPubMedCentralGoogle Scholar
  243. Wingfield JC, Hegner RE, Dufty AMJ, Ball GF (1990) The “challenge hypothesis”: theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. Am Nat 136:829–846Google Scholar
  244. Wittig RM, Crockford C, Weltring A, Langergraber KE, Deschner T, Zuberbühler K (2016) Social support reduces stress hormone levels in wild chimpanzees across stressful events and everyday affiliations. Nat Commun 7:13361PubMedPubMedCentralGoogle Scholar
  245. Young C, Majolo B, Heistermann M, Schülke O, Ostner J (2014a) Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. P Natl Acad Sci USA 111:18195–18200Google Scholar
  246. Young C, Majolo B, Schülke O, Ostner J (2014b) Male social bonds and rank predict supporter selection in cooperative aggression in wild barbary macaques. Anim Behav 95:23–32Google Scholar
  247. Young C, Majolo B, Schülke O, Ostner J (2014c) Male social bonds predict partner recruitment in cooperative aggression in wild barbary macaques. Anim Behav 80:675–682Google Scholar
  248. Zimmermann TD, Kaiser S, Hennessy MB, Sachser N (2017) Adaptive shaping of the behavioural and neuroendocrine phenotype during adolescence. Proc R Soc B 284:20162784PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Behavioral EcologyUniversity of GoettingenGoettingenGermany
  2. 2.Research Group Primate Social Evolution, German Primate CenterLeibniz Institute for Primate ResearchGoettingenGermany
  3. 3.Leibniz Science Campus Primate Cognition, German Primate CenterLeibniz Institute for Primate ResearchGoettingenGermany
  4. 4.Department of AnthropologyUniversity of New MexicoAlbuquerqueUSA
  5. 5.Konrad Lorenz Institute of Ethology - Domestication Laboratory, Department of Interdisciplinary Life SciencesUniversity of Veterinary Medicine ViennaViennaAustria

Personalised recommendations