Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of colony size on survival and sanitary strategies in fungus-infected ant colonies

Abstract

Group-living species have to deal with higher risks of exposure to pathogens and of disease propagation between group members. Insect societies have therefore evolved behaviours that contribute to the social immunity of the whole colony. Here, we investigate how the sanitary strategies displayed by ants depend on colony size, which is known to influence their social organisation. Myrmica rubra ant colonies of different sizes were faced with waste items that were infected or not by the entomopathogen fungus Metarhizium brunneum. By keeping nest parameters and pathogen loads proportional to colony size, we show that the largest colonies less suffered from exposure to life-threatening spores. Indeed, the largest colonies showed the lowest mortality rates and were the fastest to reject all the infected waste items out from their nest. Unexpectedly, small-sized colonies displayed distinct sanitary strategies according to the pathogenicity of the waste items. When challenged with fungus-bearing items, they opted out for an “emergency strategy” in which workers first moved out from their nest carrying brood and reintegrate it after sanitization by waste-transporting individuals. This demonstrates the behavioural plasticity of ant colonies of which both the size and the sanitary threat determine the efficiency and the type of hygienic responses to hygienic challenges.

Significance statement

Insect societies have evolved several collective hygienic behaviours that contribute to their “social immunity”. Here, we found out that both internal and external factors determine the efficiency and the type of hygienic responses to waste items introduced in an ant colony. In particular, small-sized colonies demonstrated a behavioural plasticity with distinct sanitary strategies according to the pathogenicity of the waste items. Such a plasticity appears to be an adaptive way to limit exposure of larvae to pathogens and hence to preserve colony development. It also raises some questions about the origin of the differences in worker’s internal threshold allowing colonies to shift between sanitary strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abraham M, Pasteels JM (1980) Social behaviour during nest-moving in the ant Myrmica rubra L. (Hym. Form.) Insect Soc 27(2):127–147. https://doi.org/10.1007/BF02229249

  2. Anderson C, Franks NR (2001) Teams in animal societies. Behav Ecol 12(5):534–540. https://doi.org/10.1093/beheco/12.5.534

  3. Ballari S, Farji-Brener AG, Tadey M (2007) Waste management in the leaf-cutting ant Acromyrmex lobicornis: division of labour, aggressive behaviour, and location of external refuse dumps. J Insect Behav 20(1):87–98. https://doi.org/10.1007/s10905-006-9065-9

  4. Barribeau SM, Sadd BM, Du Plessis L, Brown MJ, Buechel SD, Cappelle K, Evans J (2015) A depauperate immune repertoire precedes evolution of sociality in bees. Gen Biol 16(1):83. https://doi.org/10.1186/s13059-015-0628-y

  5. Bigio G, Toufailia HA, Hughes WO, Ratnieks FL (2014) The effect of one generation of controlled mating on the expression of hygienic behaviour in honey bees. J Apic Res 53(5):563–568. https://doi.org/10.3896/IBRA.1.53.5.07

  6. Boecking O, Spivak M (1999) Behavioral defenses of honey bees against Varroa jacobsoni Oud. Apidologie (France) 30(2-3):141–158. https://doi.org/10.1051/apido:19990205

  7. Bos N, Lefevre T, Jensen AB, D’Ettorre P (2012) Sick ants become unsociable. J Evol Biol 25(2):342–351. https://doi.org/10.1111/j.1420-9101.2011.02425.x

  8. Bourke AFG (1999) Colony size, social complexity and reproductive conflict in social insects. J Evol Biol 12(2):245–257. https://doi.org/10.1046/j.1420-9101.1999.00028.x

  9. Brütsch T, Felden A, Reber A, Chapuisat M (2014) Ant queens (Hymenoptera: Formicidae) are attracted to fungal pathogens during the initial stage of colony founding. Myrmecol News 20:71–76

  10. Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey-bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Tech 8(4):533–538. https://doi.org/10.1080/09583159830045

  11. Castella G, Chapuisat M, Christe P (2008) Prophylaxis with resin in wood ants. Anim Behav 75(4):1591–1596. https://doi.org/10.1016/j.anbehav.2007.10.014

  12. Chadab-Crepet R, Rettenmeyer CW (1982) Comparative behavior of social wasps when attacked by army ants or other predators and parasites. In: Breed MD, Michener CD, Evans HE (eds) Biology of social insects. Westview Press, Boulder

  13. Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc Lond B Biol Sci 274(1621):2013–2017. https://doi.org/10.1098/rspb.2007.0531

  14. Cox MD, Myerscough MR (2003) A flexible model of foraging by a honey bee colony: the effects of individual behaviour on foraging success. J Theor Biol 223(2):179–197. https://doi.org/10.1016/S0022-5193(03)00085-7

  15. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:693–702

  16. Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 268(1471):1033–1039. https://doi.org/10.1098/rspb.2001.1605

  17. Diez L, Deneubourg JL, Detrain C (2012) Social prophylaxis through distant corpse removal in ants. Naturwissenschaften 99(10):833–842. https://doi.org/10.1007/s00114-012-0965-6

  18. Diez L, Le Borgne H, Lejeune P, Detrain C (2013) Who brings out the dead? Necrophoresis in the red ant, Myrmica rubra. Anim Behav 86(6):1259–1264. https://doi.org/10.1016/j.anbehav.2013.09.030

  19. Diez L, Lejeune P, Detrain C (2014) Keep the nest clean: survival advantages of corpse removal in ants. Biol Lett 10:03–06

  20. Diez L, Urbain L, Lejeune P, Detrain C (2015) Emergency measures: adaptive response to pathogen intrusion in the ant nest. Behav Process 116:80–86. https://doi.org/10.1016/j.beproc.2015.04.016

  21. Dornhaus A, Holley JA, Franks NR (2009) Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav Ecol 20(5):922–929. https://doi.org/10.1093/beheco/arp070

  22. Drees BM, Miller RW, Vinson BS, Georgis R (1992) Susceptibility and behavioral response of red imported fire ant (Hymenoptera: Formicidae) to selected entomogenous nematodes (Rhabditida: Steinernematidae & Heterorhabditidae). J Econ Entomol 85(2):365–370. https://doi.org/10.1093/jee/85.2.365

  23. Droual R (1983) The organization of nest evacuation in Pheidole desertorum Wheeler and P. hyatti Emery (Hymenoptera: Formicidae). Behav Ecol Sociobiol 12(3):203–208. https://doi.org/10.1007/BF00290772

  24. Droual R (1984) Anti-predator behaviour in the ant Pheidole desertorum: the importance of multiple nests. Anim Behav 32(4):1054–1058. https://doi.org/10.1016/S0003-3472(84)80221-3

  25. Elmes GW (1973) Observations on density of queens in natural colonies of Myrmica rubra L.(Hymenoptera: Formicidae). J Anim Ecol 42(3):761–771. https://doi.org/10.2307/3136

  26. Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15(5):645–656. https://doi.org/10.1111/j.1365-2583.2006.00682.x

  27. Evans HC, Groden E, Bischoff JF (2010) New fungal pathogens of the red ant, Myrmica rubra, from the UK and implications for ant invasions in the USA. Fungal Biol 114(5-6):451–466. https://doi.org/10.1016/j.funbio.2010.03.007

  28. Fefferman NH, Traniello JF, Rosengaus RB, Calleri DV (2007) Disease prevention and resistance in social insects: modeling the survival consequences of immunity, hygienic behavior, and colony organization. Behav Ecol Sociobiol 61(4):565–577. https://doi.org/10.1007/s00265-006-0285-y

  29. Fewell JH, Page RE (1993) Genotypic variation in foraging responses to environmental stimuli by honey bees, Apis mellifera. Cell Mol Life Sci 49(12):1106–1112. https://doi.org/10.1007/BF01929923

  30. Gordon DM, Mehdiabadi NJ (1999) Encounter rate and task allocation in harvester ants. Behav Ecol Sociobiol 45(5):370–377. https://doi.org/10.1007/s002650050573

  31. Hänel H (1982) The life cycle of the insect pathogenic fungus Metarhizium brunneum in the termite Nasutitermes exitiosus. Mycopathologia 80(3):137–145. https://doi.org/10.1007/BF00437576

  32. Harpur BA, Zayed A (2013) Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 30(7):1665–1674. https://doi.org/10.1093/molbev/mst061

  33. Hart AG, Ratnieks FLW (2002) Waste management in the leaf-cutting ant Atta colombica. Behav Ecol 13(2):224–231. https://doi.org/10.1093/beheco/13.2.224

  34. Holbrook CT, Barden PM, Fewell JH (2011) Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav Ecol 22(5):960–966. https://doi.org/10.1093/beheco/arr075

  35. Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

  36. Hou C, Kaspari M, Vander Zanden HB, Gillooly JF (2010) Energetic basis of colonial living in social insects. Proc Natl Acad Sci 107(8):3634–3638. https://doi.org/10.1073/pnas.0908071107

  37. Howard DF, Tschinkel WR (1976) Aspects of necrophoric behavior in the red imported fire ant, Solenopsis invicta. Behaviour 56(1):157–180. https://doi.org/10.1163/156853976X00334

  38. Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc Lond B 269(1502):1811–1819. https://doi.org/10.1098/rspb.2002.2113

  39. Jackson DE, Hart AG (2009) Does sanitation facilitate sociality? Anim Behav 77(1):e1–e5. https://doi.org/10.1016/j.anbehav.2008.09.013

  40. Julian GE, Cahan S (1999) Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Anim Behav 58(2):437–442. https://doi.org/10.1006/anbe.1999.1184

  41. Julian GE, Fewell JH (2004) Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Anim Behav 68(1):1–8. https://doi.org/10.1016/j.anbehav.2003.06.023

  42. Karsai I, Wenzel JW (1998) Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. Proc Natl Acad Sci 95(15):8665–8669. https://doi.org/10.1073/pnas.95.15.8665

  43. Kolmes SA, Winston ML (1988) Division of labour among worker honey bees in demographically manipulated colonies. Insect Soc 35(3):262–270. https://doi.org/10.1007/BF02224059

  44. Lamon B, Topoff H (1981) Avoiding predation by army ants: defensive behaviours of three ant species of the genus Camponotus. Anim Behav 29(4):1070–1081. https://doi.org/10.1016/S0003-3472(81)80060-7

  45. Leclerc JB, Detrain C (2016) Ants detect but do not discriminate diseased workers within their nest. Naturwissenschaften 103(7-8):70. https://doi.org/10.1007/s00114-016-1394-8

  46. Mailleux AC, Deneubourg JL, Detrain C (2003) How does colony growth influence communication in ants? Insect Soc 50(1):24–31. https://doi.org/10.1007/s000400300004

  47. McCallum H, Barlow N, Hone J (2001) How should pathogen transmission be modelled? Trends Ecol Evol 16(6):295–300. https://doi.org/10.1016/S0169-5347(01)02144-9

  48. McGlynn TP (2007) Serial monodomy in ants: an antipredator strategy? Ecol Entomol 32(6):621–626. https://doi.org/10.1111/j.1365-2311.2007.00909.x

  49. Myerscough MR, Oldroyd BP (2004) Simulation models of the role of genetic variability in social insect task allocation. Insect Soc 51(2):146–152. https://doi.org/10.1007/s00040-003-0713-1

  50. Naug D, Camazine S (2002) The role of colony organization on pathogen transmission in social insects. J Theor Biol 215(4):427–439. https://doi.org/10.1006/jtbi.2001.2524

  51. O’Donnell S (1998) Genetic effects on task performance, but not on age polyethism, in a swarm-founding eusocial wasp. Anim Behav 55(2):417–426. https://doi.org/10.1006/anbe.1997.0627

  52. O’Shea-Wheller TA, Sendova-Franks AB, Franks NR (2015) Differentiated anti-predation responses in a superorganism. PLoS One 10(11):e0141012. https://doi.org/10.1371/journal.pone.0141012

  53. O'donnell S, Reichardt M, Foster R (2000) Individual and colony factors in bumble bee division of labor (Bombus bifarius nearcticus Handl; Hymenoptera, Apidae). Insect Soc 47(2):164–170. https://doi.org/10.1007/PL00001696

  54. Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera, Formicidae). Fla Entomol 76(1):63–74. https://doi.org/10.2307/3496014

  55. Okuno M, Tsuji K, Sato H, Fujisaki K (2012) Plasticity of grooming behaviour against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30(1):23–27. https://doi.org/10.1007/s10164-011-0285-x

  56. Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies. Trends Ecol Evol 22(8):408–413. https://doi.org/10.1016/j.tree.2007.06.001

  57. Page RE, Robinson GE (1991) The genetics of division of labour in honey bee colonies. Adv Insect Physiol 23:117–169. https://doi.org/10.1016/S0065-2806(08)60093-4

  58. Page RE, Robinson GE, Fondrk MK, Nasr ME (1995) Effects of worker genotypic diversity on honey bee colony development and behavior (Apis mellifera L.) Behav Ecol Sociobiol 36(6):387–396. https://doi.org/10.1007/BF00177334

  59. Pie MR, Rosengaus RB, Traniello JF (2004) Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol 226(1):45–51. https://doi.org/10.1016/j.jtbi.2003.08.002

  60. Pinheiro JC, Bates DM (2000) Linear mixed-effects models: basic concepts and examples. Mixed-effects models in S and S-Plus. Spriger Verlag, New York, p 3–56

  61. Pontieri L, Vojvodic S, Graham R, Pedersen JS, Linksvayer TA (2014) Ant colonies prefer infected over uninfected nest sites. PLoS One 9(11):e111961. https://doi.org/10.1371/journal.pone.0111961

  62. Pruitt JN, Grinsted L, Settepani V (2013) Linking levels of personality: personalities of the “average” and “most extreme” group members predict colony-level personality. Anim Behav 86(2):391–399. https://doi.org/10.1016/j.anbehav.2013.05.030

  63. Reber A, Chapuisat M (2012) No evidence for immune priming in ants exposed to a fungal pathogen. PLoS One 7:353–353

  64. Renucci M, Tirard A, Provost E (2011) Complex undertaking behavior in Temnothorax lichtensteini ant colonies: from corpse-burying behavior to necrophoric behavior. Insect Soc 58(1):9–16. https://doi.org/10.1007/s00040-010-0109-y

  65. Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44(2):125–134. https://doi.org/10.1007/s002650050523

  66. Rosengaus RB, Jordan C, Lefebvre ML, Traniello JFA (1999) Pathogen alarm behavior in a termite: a new form of communication in social insects. Naturwissenschaften 86(11):544–548. https://doi.org/10.1007/s001140050672

  67. Sadd BM, Barribeau SM, Bloch G, De Graaf DC, Dearden P, Elsik CG, Robertson HM (2015) The genomes of two key bumblebee species with primitive eusocial organization. Gen Biol 16(1):76. https://doi.org/10.1186/s13059-015-0623-3

  68. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, Princeton

  69. Schmid-Hempel P, Schmid-Hempel R (1993) Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav Ecol Sociobiol 33:319–327

  70. Seeley TD (1985) Honeybee ecology: a study of adaptation in social life. Princeton University Press, Princeton. https://doi.org/10.1515/9781400857876

  71. Seeley TD, Kolmes SA (1991) Age polyethism for hive duties in honey bees—illusion or reality? Ethology 87:284–297

  72. Shykoff JA, Schmid-Hempel P (1991) Parasites and the advantage of genetic variability within social insect colonies. Proc R Soc Lond B Biol Sci 243(1306):55–58. https://doi.org/10.1098/rspb.1991.0009

  73. Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63(11):3016–3022. https://doi.org/10.1111/j.1558-5646.2009.00772.x

  74. Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41(3):295–311. https://doi.org/10.1051/apido/2010016

  75. Smith CR, Toth AL, Suarez AV, Robinson GE (2008) Genetic and genomic analyses of the division of labour in insect societies. Nat Rev Genet 9(10):735–748. https://doi.org/10.1038/nrg2429

  76. Snyder LE (1993) Non-random behavioural interactions among genetic subgroups in a polygynous ant. Anim Behav 46(3):431–439. https://doi.org/10.1006/anbe.1993.1212

  77. Spivak M, Reuter G (2001) Resistance to American foulbrood disease by honey bee colonies Apis mellifera bred for hygienic behavior. Apidologie 32(6):555–565. https://doi.org/10.1051/apido:2001103

  78. Staples JA, Milner RJ (2000) A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology 36:133–148

  79. Theraulaz G, Bonabeau E, Deneubourg JL (1998) Response threshold reinforcements and division of labour in insect societies. Proc R Soc Lond B Biol Sci 265(1393):327–332. https://doi.org/10.1098/rspb.1998.0299

  80. Thomas ML, Elgar MA (2003) Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90(2):88–92. https://doi.org/10.1007/s00114-002-0396-x

  81. Ugelvig LV, Kronauer DJ, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc Lond B Biol Sci 277(1695):2821–2828. https://doi.org/10.1098/rspb.2010.0644

  82. Verhoeff K (1974) Latent infections by fungi. Annu Rev Phytopathol 12(1):99–110. https://doi.org/10.1146/annurev.py.12.090174.000531

  83. Waddington SJ, Hughes WOH (2010) Waste management in the leaf-cutting ant Acromyrmex echinatior: the role of worker size, age and plasticity. Behav Ecol Sociobiol 64(8):1219–1228. https://doi.org/10.1007/s00265-010-0936-x

  84. Waters JS, Holbrook CT, Fewell JH, Harrison JF (2010) Allometric scaling of metabolism, growth, and activity in whole colonies of the seed-harvester ant Pogonomyrmex californicus. Am Nat 176(4):501–510. https://doi.org/10.1086/656266

  85. Wilson EO (1986) The organization of flood evacuation in the ant genus Pheidole (Hymenoptera: Formicidae). Insect Soc 33(4):458–469. https://doi.org/10.1007/BF02223951

  86. Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. Biol Control 52:75–85

Download references

Acknowledgements

We thank the anonymous referees for their comments as well as Nell Foster for improving the English of this MS.

Funding

This study was funded by a Ph.D. grant to J-B.L. from FRIA (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture) and by a research credit (CDR J.0092.16) from FRS-FNRS (Fonds de la Recherche Scientifique). C.D. is Research Director from the Belgian National Fund for Scientific Research (FNRS).

Author information

Correspondence to Jean-Baptiste Leclerc.

Additional information

Communicated by S. Cremer

Electronic supplementary material

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leclerc, J., Detrain, C. Impact of colony size on survival and sanitary strategies in fungus-infected ant colonies. Behav Ecol Sociobiol 72, 3 (2018). https://doi.org/10.1007/s00265-017-2415-0

Download citation

Keywords

  • Waste management
  • Hygienic behaviours
  • Phenotypic plasticity
  • Colony size
  • Entomopathogenic fungus
  • Myrmica rubra
  • Metarhizium brunneum