Advertisement

Motor flexibility in insects: adaptive coordination of limbs in locomotion and near-range exploration

  • Volker Dürr
  • Leslie M. Theunissen
  • Chris J. Dallmann
  • Thierry Hoinville
  • Josef Schmitz
Review
Part of the following topical collections:
  1. From sensory perception to behavior

Abstract

In recent years, research on insect motor behaviour―locomotion in particular―has provided a number of important new insights, many of which became possible because of methodological advances in motion capture of unrestrained moving insects. Behavioural analyses have not only backed-up neurophysiological analyses of the underlying mechanisms at work, they have also highlighted the complexity and variability of leg movements in naturalistic, unrestrained behaviour. Here, we argue that the variability of unrestrained motor behaviour should be considered a sign of behavioural flexibility. Assuming that variation of movement-related parameters is governed by neural mechanisms, behavioural analyses can complement neurophysiological investigations, for example by (i) dissociating distinct movement episodes based on functional and statistical grounds, (ii) quantifying when and how transitions between movement episodes occur, and (iii) dissociating temporal and spatial coordination. The present review emphasises the importance of considering the functional diversity of limb movements in insect behaviour. In particular, we highlight the fundamental difference between leg movements that generate interaction forces as opposed to those that do not. On that background, we discuss the spatially continuous modulation of swing movements and the quasi-rhythmic nature of stepping across insect orders. Based on examples of motor flexibility in stick insects, we illustrate the relevance of behaviour-based approaches for computational modelling of a rich and adaptive movement repertoire. Finally, we emphasise the intimate interplay of locomotion and near-range exploration. We propose that this interplay, through continuous integration of distributed, multimodal sensory feedback, is key to locomotor flexibility.

Keywords

Insect Motor behaviour Leg coordination Gait Sensory feedback 

Notes

Acknowledgements

The authors thank the students of the “control of behaviour” master course 2016 and Bianca Jaske for collecting data on free walking insects. Part of these data was used for Fig. 1a, and Fig. 2b. Moreover, we thank two anonymous reviewers for their helpful comments and suggestions, and Yannick Günzel for his assistance in data management and analysis. This work was supported by the cluster of excellence 277, CITEC, funded by of the German Research Council, DFG.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

ESM 1

(AVI 1302 kb).

ESM 2

(AVI 1555 kb).

265_2017_2412_MOESM3_ESM.avi (811 kb)
ESM 3 (AVI 811 kb).
265_2017_2412_MOESM4_ESM.avi (1.8 mb)
ESM 4 (AVI 1882 kb).

References

  1. Ahn AN, Full RJ (2002) A motor and a brake: two leg extensor muscles acting at the same joint manage energy differently in a running insect. J Exp Biol 205(Pt 3):379–389PubMedGoogle Scholar
  2. Alexander RM (2003) Principles of animal locomotion. Princeton University Press, Princeton.  https://doi.org/10.1515/9781400849512 Google Scholar
  3. Bässler U (1983) Neural basis of elementary behavior in stick insects. Springer, Berlin.  https://doi.org/10.1007/978-3-642-68813-3 Google Scholar
  4. Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27(1):65–88.  https://doi.org/10.1016/S0165-0173(98)00006-X PubMedGoogle Scholar
  5. Berendes V, Zill SN, Büschges A, Bockemühl T (2016) Speed-dependent interplay between local pattern-generating activity and sensory signals during walking in Drosophila. J Exp Biol 219(23):3781–3793.  https://doi.org/10.1242/jeb.146720 PubMedGoogle Scholar
  6. Berg E, Büschges A, Schmidt J (2013) Single perturbations cause sustained changes in searching behavior in stick insects. J Exp Biol 216(6):1064–1074.  https://doi.org/10.1242/jeb.076406 PubMedGoogle Scholar
  7. Berg EM, Hooper SL, Schmidt J, Büschges A (2015) A leg-local neural mechanism mediates the decision to search in stick insects. Curr Biol 25(15):2012–2017.  https://doi.org/10.1016/j.cub.2015.06.017 PubMedGoogle Scholar
  8. Berkowitz A, Laurent G (1996) Local control of leg movements and motor patterns during grooming in locusts. J Neurosci 16(24):8067–8078PubMedGoogle Scholar
  9. Bläsing B (2006) Crossing large gaps: a simulation study of stick insect behavior. Adapt Behav 14(3):265–285.  https://doi.org/10.1177/105971230601400307 Google Scholar
  10. Bläsing B, Cruse H (2004) Stick insect locomotion in a complex environment: climbing over large gaps. J Exp Biol 207(8):1273–1286.  https://doi.org/10.1242/jeb.00888 Google Scholar
  11. Blickhan R, Full RJ (1993) Similarity in multilegged locomotion: bouncing like a monopode. J Comp Physiol A 173:509–517Google Scholar
  12. Borgmann A, Hooper SL, Büschges A (2009) Sensory feedback induced by front-leg stepping entrains the activity of central pattern generators in caudal segments of the stick insect walking system. J Neurosci 29(9):2972–2983.  https://doi.org/10.1523/JNEUROSCI.3155-08.2009 PubMedGoogle Scholar
  13. Brunn DE, Dean J (1994) Intersegmental and local interneurons in the metathorax of the stick insect Carausius morosus that monitor middle leg position. J Neurophysiol 72(3):1208–1219PubMedGoogle Scholar
  14. Büschges A (1995) Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. J Neurobiol 27(4):488–512.  https://doi.org/10.1002/neu.480270405 PubMedGoogle Scholar
  15. Büschges A (2012) Lessons for circuit function from large insects: towards understanding the neural basis of motor flexibility. Curr Opin Neurobiol 22(4):602–608.  https://doi.org/10.1016/j.conb.2012.02.003 PubMedGoogle Scholar
  16. Büschges A, Gruhn M (2007) Mechanosensory feedback in walking: from joint control to locomotor patterns. Adv Insect Physiol 34:193–230.  https://doi.org/10.1016/S0065-2806(07)34004-6 Google Scholar
  17. Büschges A, Schmitz J, Bässler U (1995) Rhythmic patterns in the thoracic nerve cord of the stick insect induced by pilocarpine. J Exp Biol 198:435–456Google Scholar
  18. Camhi JM, Johnson EN (1999) High-frequency steering maneuvers mediated by tactile cues: antennal wall-following in the cockroach. J Exp Biol 202(Pt 5):631–643PubMedGoogle Scholar
  19. Cruse H (1976) The function of the legs in the free walking stick insect Carausius morosus. J Comp Physiol 112(2):235–262.  https://doi.org/10.1007/BF00606541 Google Scholar
  20. Cruse H (1979) The control of the anterior extreme position of the hindleg of a walking insect, Carausius morosus. Physiol Entomol 4(2):121–124.  https://doi.org/10.1111/j.1365-3032.1979.tb00186.x Google Scholar
  21. Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13(1):15–21.  https://doi.org/10.1016/0166-2236(90)90057-H PubMedGoogle Scholar
  22. Cruse H, Dean J, Suilmann M (1984) The contributions of diverse sense organs in the control of leg movement by a walking insect. J Comp Physiol 154(5):695–705.  https://doi.org/10.1007/BF01350223 Google Scholar
  23. Cruse H, Bartling C, Dreifert M, Schmitz J, Brunn DE, Dean J, Kindermann T (1995) Walking: a complex behaviour controlled by simple networks. Adapt Behav 3(4):385–418.  https://doi.org/10.1177/105971239500300403 Google Scholar
  24. Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet - a biologically inspired network to control six-legged walking. Neural Netw 11(7-8):1435–1447.  https://doi.org/10.1016/S0893-6080(98)00067-7 PubMedGoogle Scholar
  25. Cruse H, Dürr V, Schilling M, Schmitz J (2009) Principles of insect locomotion. In: Arena P, Patanè L (eds) Spatial temporal patterns for action-oriented perception in roving robots. Springer, Berlin, pp 43–96.  https://doi.org/10.1007/978-3-540-88464-4_2 Google Scholar
  26. Dallmann CJ, Dürr V, Schmitz J (2016) Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc R Soc B 283(1823):20151708.  https://doi.org/10.1098/rspb.2015.1708 PubMedGoogle Scholar
  27. Dallmann CJ, Hoinville T, Dürr V, Schmitz J (2017) A load-based mechanism for inter-leg coordination in insects. Proc R Soc B 284(1868):20171755.  https://doi.org/10.1098/rspb.2017.1755 PubMedGoogle Scholar
  28. Dean J (1990) Coding proprioceptive information to control movement to a target: simulation with a simple neural network. Biol Cybern 63(2):115–120.  https://doi.org/10.1007/BF00203033 Google Scholar
  29. Dean J, Schmitz J (1992) The two groups of sensilla in the ventral coxal hairplate of Carausius morosus have different roles during walking. Physiol Entomol 17(4):331–341.  https://doi.org/10.1111/j.1365-3032.1992.tb01031.x Google Scholar
  30. Dean J, Wendler G (1983) Stick insect locomotion on a walking wheel: interleg coordination of leg position. J Exp Biol 103:75–94Google Scholar
  31. Delcomyn F (1980) Neural basis of rhythmic behaviour in animals. Science 210(4469):492–498.  https://doi.org/10.1126/science.7423199 PubMedGoogle Scholar
  32. Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288(5463):100–106.  https://doi.org/10.1126/science.288.5463.100 PubMedGoogle Scholar
  33. Donelan JM, Pearson KG (2004) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92(4):2093–2104.  https://doi.org/10.1152/jn.00325.2004 PubMedGoogle Scholar
  34. Duch C, Pflüger HJ (1995) Motor patterns for horizontal and upside-down walking and vertical climbing in the locust. J Exp Biol 198(Pt 9):1963–1976PubMedGoogle Scholar
  35. Dürr V (2001) Stereotypic leg searching-movements in the stick insect: kinematic analysis, behavioural context and simulation. J Exp Biol 204(Pt 9):1589–1604PubMedGoogle Scholar
  36. Dürr V (2005) Context-dependent changes in strength and efficacy of leg coordination mechanisms. J Exp Biol 208(12):2253–2267.  https://doi.org/10.1242/jeb.01638 PubMedGoogle Scholar
  37. Dürr V, Ebeling W (2005) The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning. J Exp Biol 208(12):2237–2252.  https://doi.org/10.1242/jeb.01637 PubMedGoogle Scholar
  38. Dürr V, Matheson T (2003) Graded limb targeting in an insect is caused by the shift of a single movement pattern. J Neurophysiol 90(3):1754–1765.  https://doi.org/10.1152/jn.00416.2003 PubMedGoogle Scholar
  39. Dürr V, König Y, Kittmann R (2001) The antennal motor system of the stick insect Carausius morosus: anatomy and antennal movement pattern during walking. J Comp Physiol A 187(2):131–144PubMedGoogle Scholar
  40. Dürr V, Krause AF, Schmitz J, Cruse H (2003) Neuroethological concepts and their transfer to walking machines. Int J Robot Res 22(3-4):151–167.  https://doi.org/10.1177/0278364903022003002 Google Scholar
  41. Dürr V, Schmitz J, Cruse H (2004) Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Struct Dev 33(3):237–250.  https://doi.org/10.1016/j.asd.2004.05.004 PubMedGoogle Scholar
  42. Duysens J, Clarac C, Cruse H (2000) Load regulation mechanisms in gait and posture: comparative aspects. Physiol Rev 80(1):83–133PubMedGoogle Scholar
  43. Ebeling W, Dürr V (2006) Perturbation of leg protraction causes context-dependent modulation of inter-leg coordination, but not of avoidance reflexes. J Exp Biol 209(11):2199–2214.  https://doi.org/10.1242/jeb.02251 PubMedGoogle Scholar
  44. Ekeberg Ö, Pearson KG (2005) Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition. J Neurophysiol 94(6):4256–4268.  https://doi.org/10.1152/jn.00065.2005 PubMedGoogle Scholar
  45. Ekeberg Ö, Blümel M, Büschges A (2004) Dynamic simulation of insect walking. Arthropod Struct Dev 33(3):287–300.  https://doi.org/10.1016/j.asd.2004.05.002 PubMedGoogle Scholar
  46. Elias DO, Maddison WP, Peckmezian C, Girard MB, Mason AC (2012) Orchestrating the score: complex multimodal courtship in the Habronattus coecatus group of Habronattus jumping spiders (Araneae: Salticidae). Biol J Linn Soc 105(3):522–547.  https://doi.org/10.1111/j.1095-8312.2011.01817.x Google Scholar
  47. Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol 27:1–288.  https://doi.org/10.1016/S0065-2806(08)60013-2 Google Scholar
  48. Fujiwara T, Cruz TL, Bohnslav JP, Chiappe ME (2017) A faithful internal representation of walking movements in the Drosophila visual system. Nat Neurosci 20(1):72–81.  https://doi.org/10.1038/nn.4435 PubMedGoogle Scholar
  49. Full RJ, Blickhan R, Ting LH (1991) Leg design in hexapedal runners. J Exp Biol 158:369–390PubMedGoogle Scholar
  50. Goldman DI, Chen TS, Dudek DM, Full RJ (2006) Dynamics of rapid vertical climbing in a cockroach reveals a template. J Exp Biol 209(15):2990–3000.  https://doi.org/10.1242/jeb.02322 PubMedGoogle Scholar
  51. Grabowska M, Godlewska E, Schmidt J, Daun-Gruhn S (2012) Quadrupedal gaits in hexapod animals - inter-leg coordination in free-walking adult stick insects. J Exp Biol 215(24):4255–4266.  https://doi.org/10.1242/jeb.073643 PubMedGoogle Scholar
  52. Harley CM, English BA, Ritzmann RE (2009) Characterization of obstacle negotiation behaviors in the cockroach, Blaberus discoidalis. J Exp Biol 212(10):1463–1476.  https://doi.org/10.1242/jeb.028381 PubMedGoogle Scholar
  53. Hedwig B, Heinrich R (1997) Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J Comp Physiol A 180(3):285–294.  https://doi.org/10.1007/s003590050048 Google Scholar
  54. Hoinville T, Schilling M, Cruse H (2015) Control of rhythmic behavior: central and peripheral influences to pattern generation. In: Proceedings of ICRA workshop on “pros and cons of central pattern generators” IEEE, SeattleGoogle Scholar
  55. Horridge GA (1962) Learning of leg position by the ventral nerve cord in headless insects. Proc R Soc Lond B 157(966):33–52.  https://doi.org/10.1098/rspb.1962.0061 Google Scholar
  56. Horseman BG, Gebhardt MJ, Honegger H-W (1997) Involvement of the suboesophageal and thoracic ganglia in the control of antennal movements in crickets. J Comp Physiol A 181:195–204Google Scholar
  57. Hughes GM (1952) The co-ordination of insect movements: I. The walking movements of insects. J Exp Biol 29:267–285Google Scholar
  58. Ikeda K, Wiersma CAG (1964) Autogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements. Comp Biochem Physiol 12:107–115PubMedGoogle Scholar
  59. Isakov A, Buchanan SM, Sullivan B, Ramachandran A, Chapman JKS, ES L, Mahadevan L, de Bivort BL (2016) Recovery of locomotion after injury in Drosophila depends on proprioception. J Exp Biol 219(11):1760–1771.  https://doi.org/10.1242/jeb.133652 PubMedGoogle Scholar
  60. Keller BR, Duke ER, Aymer AS, Zill SN (2007) Tuning posture to body load: decreases in load produce discrete sensory signals in the legs of freely standing cockroaches. J Comp Physiol A 193(8):881–891.  https://doi.org/10.1007/s00359-007-0241-y Google Scholar
  61. Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt Behav 9:16–41Google Scholar
  62. Krause AF, Dürr V (2012) Active tactile sampling by an insect in a step-climbing paradigm. Front Behav Neurosci 6:1–17Google Scholar
  63. Krause AF, Winkler A, Dürr V (2013) Central drive and proprioceptive control of antennal movements in the walking stick insect. J Physiol Paris 107(1-2):116–129.  https://doi.org/10.1016/j.jphysparis.2012.06.001 PubMedGoogle Scholar
  64. Krishnan A, Sane SP (2015) Antennal mechanosensors and their evolutionary antecedents. Adv Insect Physiol 49:59–99.  https://doi.org/10.1016/bs.aiip.2015.06.003 Google Scholar
  65. Ludwar BC, Goeritz ML, Schmidt J (2005) Intersegmental coordination of walking movements in stick insects. J Neurophysiol 93(3):1255–1265.  https://doi.org/10.1152/jn.00727.2004 PubMedGoogle Scholar
  66. Markl H (1962) Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z Vergl Physiol 45(5):475–569.  https://doi.org/10.1007/BF00342998 Google Scholar
  67. McGhee RB, Iswandhi GI (1979) Adaptive locomotion of a multilegged robot over rough terrain. IEEE T Syst Man Cyb 9(4):176–182.  https://doi.org/10.1109/TSMC.1979.4310180 Google Scholar
  68. McVea DA, Pearson KG (2006) Long-lasting memories of obstacles guide leg movements in the walking cat. J Neurosci 26(4):1175–1178.  https://doi.org/10.1523/JNEUROSCI.4458-05.2006 PubMedGoogle Scholar
  69. Moll K, Roces F, Federle W (2013) How load-carrying ants avoid falling over: mechanical stability during foraging in Atta vollenweideri grass-cutting ants. PLoS One 8(1):e52816.  https://doi.org/10.1371/journal.pone.0052816 PubMedPubMedCentralGoogle Scholar
  70. Mongeau JM, Demir A, Lee J, Cowan NJ, Full RJ (2013) Locomotion- and mechanics-mediated tactile sensing: antenna reconfiguration simplifies control during high-speed navigation in cockroaches. J Exp Biol 216(24):4530–4541.  https://doi.org/10.1242/jeb.083477 PubMedGoogle Scholar
  71. Müller-Wilm U, Dean J, Cruse H, Weidemann HJ, Eltze J, Pfeiffer F (1992) Kinematic model of stick insect as an example of a 6-legged walking system. Adapt Behav 1(2):155–169.  https://doi.org/10.1177/105971239200100202 Google Scholar
  72. Okada J, Toh Y (2001) Peripheral representation of antennal orientation by the scapal hair plate of the cockroach Periplaneta americana. J Exp Biol 204(Pt 24):4301–4309PubMedGoogle Scholar
  73. Okada J, Toh Y (2004) Spatio-temporal patterns of antennal movements in the searching cockroach. J Exp Biol 207(21):3693–3706.  https://doi.org/10.1242/jeb.01201 PubMedGoogle Scholar
  74. Okada J, Morimoto Y, Toh Y (2009) Antennal motor activity induced by pilocarpine in the American cockroach. J Comp Physiol A 195(4):351–363.  https://doi.org/10.1007/s00359-008-0411-6 Google Scholar
  75. Owaki D, Ishiguro A (2017) A quadruped robot exhibiting spontaneous gait transitions from walking to trotting to galloping. Sci Rep 7(1):277.  https://doi.org/10.1038/s41598-017-00348-9 PubMedPubMedCentralGoogle Scholar
  76. Owaki D, Kano T, Nagasawa K, Atsushi T, Ishiguro A (2013) Simple robot suggests physical interlimb communication is essential for quadruped walking. J R Soc Interface 10(78):20120669.  https://doi.org/10.1098/rsif.2012.0669 PubMedPubMedCentralGoogle Scholar
  77. Page KL, Matheson T (2009) Functional recovery of aimed scratching movements following a graded proprioceptive manipulation. J Neurosci 29(12):3897–3907.  https://doi.org/10.1523/JNEUROSCI.0089-09.2009 PubMedGoogle Scholar
  78. Pal PK, Jayarajan K (1990) A free gait for generalized motion. IEEE T Robot Autom 6(5):597–600.  https://doi.org/10.1109/70.62049 Google Scholar
  79. Pelletier Y, McLeod CD (1994) Obstacle perception by insect antennae during terrestrial locomotion. Physiol Entomol 19(4):360–362.  https://doi.org/10.1111/j.1365-3032.1994.tb01063.x Google Scholar
  80. Pfeffer SE, Wittlinger M (2016) Optic flow odometry operates independently of stride integration in carried ants. Science 353(6304):1155–1157.  https://doi.org/10.1126/science.aaf9754 PubMedGoogle Scholar
  81. Pfeffer SE, Wahl VL, Wittlinger M (2016) How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants. J Exp Biol 219(14):2110–2118.  https://doi.org/10.1242/jeb.137778 PubMedGoogle Scholar
  82. Pick S, Strauss R (2005) Goal-driven behavioral adaptations in gap-climbing Drosophila. Curr Biol 15(16):1473–1478.  https://doi.org/10.1016/j.cub.2005.07.022 PubMedGoogle Scholar
  83. Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418(6900):872–876.  https://doi.org/10.1038/nature00919 PubMedGoogle Scholar
  84. Reinhardt L, Weihmann T, Blickhan R (2009) Dynamics and kinematics of ant locomotion: do wood ants climb on level surfaces? J Exp Biol 212(15):2426–2435.  https://doi.org/10.1242/jeb.026880 PubMedGoogle Scholar
  85. Riley JR, Greggers U, Smith AD, Reynolds DR, Menzel R (2005) The flight paths of honeybees recruited by the waggle dance. Nature 435(7039):205–207.  https://doi.org/10.1038/nature03526 PubMedGoogle Scholar
  86. Schilling M, Hoinville T, Schmitz J, Cruse H (2013a) Walknet, a bio-inspired controller for hexapod walking. Biol Cybern 107(4):397–419.  https://doi.org/10.1007/s00422-013-0563-5 PubMedPubMedCentralGoogle Scholar
  87. Schilling M, Paskarbeit J, Hoinville T, Hüffmeier A, Schneider A, Schmitz J, Cruse H (2013b) A hexapod walker using a heterarchical architecture for action selection. Front Comput Neurosci 7:126.  https://doi.org/10.3389/fncom.2013.00126 PubMedPubMedCentralGoogle Scholar
  88. Schumm M, Cruse H (2006) Control of swing movement: influences of differently shaped substrate. J Comp Physiol A 192(10):1147–1164.  https://doi.org/10.1007/s00359-006-0147-0 Google Scholar
  89. Schütz C, Dürr V (2011) Active tactile exploration for adaptive locomotion in the stick insect. Philos Trans R Soc B 366(1581):2996–3005.  https://doi.org/10.1098/rstb.2011.0126 Google Scholar
  90. Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, Simpson JH (2014) A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. elife 3:e02951.  https://doi.org/10.7554/eLife.02951 PubMedPubMedCentralGoogle Scholar
  91. Staudacher E, Schildberger K (1999) A newly described neuropile in the deuterocerebrum of the cricket: antennal afferents and descending interneurons. Zool Anal Complex Syst 102:212–226Google Scholar
  92. Staudacher E, Gebhardt MJ, Dürr V (2005) Antennal movements and mechanoreception: neurobiology of active tactile sensors. Adv Insect Physiol 32:49–205.  https://doi.org/10.1016/S0065-2806(05)32002-9 Google Scholar
  93. Strauss R, Heisenberg M (1990) Coordination of legs during straight walking and turning in Drosophila melanogaster. J Comp Physiol A 167(3):403–412PubMedGoogle Scholar
  94. Szczecinski NS, Brown AE, Bender JA, Quinn RD, Ritzmann RE (2014) A neuromechanical simulation of insect walking and transition to turning of the cockroach Blaberus Discoidalis. Biol Cybern 108(1):1–21.  https://doi.org/10.1007/s00422-013-0573-3 PubMedGoogle Scholar
  95. Theunissen LM, Dürr V (2013) Insects use two distinct classes of steps during unrestrained locomotion. PLoS One 8(12):e85321.  https://doi.org/10.1371/journal.pone.0085321 PubMedPubMedCentralGoogle Scholar
  96. Theunissen LM, Vikram S, Dürr V (2014) Spatial co-ordination of foot contacts in unrestrained climbing insects. J Exp Biol 217(18):3242–3253.  https://doi.org/10.1242/jeb.108167 PubMedGoogle Scholar
  97. Theunissen LM, Bekemeier HH, Dürr V (2015) Comparative whole-body kinematics of closely related insect species with different body morphology. J Exp Biol 218(3):340–352.  https://doi.org/10.1242/jeb.114173 PubMedGoogle Scholar
  98. Ting LH, Blickhan R, Full RJ (1994) Dynamic and static stability in hexapedal runners. J Exp Biol 197:251–269PubMedGoogle Scholar
  99. Toth TI, Daun S (2017) Effects of functional decoupling of a leg in a model of stick insect walking incorporating three ipsilateral legs. Physiol Rep 5(4):e13154.  10.14814/phy2.13154 PubMedPubMedCentralGoogle Scholar
  100. Tryba AK, Ritzmann RE (2000) Multi-joint coordination during walking and foothold searching in the Blaberus cockroach. II. Extensor motor neuron pattern. J Neurophysiol 83(6):3337–3350PubMedGoogle Scholar
  101. Twickel AV, Büschges A, Pasemann F (2011) Deriving neural network controllers from neuro-biological data: implementation of a single-leg stick insect controller. Biol Cybern 104:95–119Google Scholar
  102. von Buddenbrock W (1920) Der Rhythmus der Schreitbewegungen der Stabheuschrecke Dyxippus. Biol Zentralbl 41:41–48Google Scholar
  103. von Holst E (1943) Über relative Koordination bei Arthropoden. Pflügers Arch 246(6):847–865.  https://doi.org/10.1007/BF01751829 Google Scholar
  104. Wahl V, Pfeffer SE, Wittlinger M (2015) Walking and running in the desert ant Cataglyphis fortis. J Comp Physiol A 201(6):645–656.  https://doi.org/10.1007/s00359-015-0999-2 Google Scholar
  105. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189(8):579–588.  https://doi.org/10.1007/s00359-003-0431-1 Google Scholar
  106. Weihmann T, Blickhan R (2009) Comparing inclined locomotion in a ground-living and a climbing ant species: sagittal plane kinematics. J Comp Physiol A 195(11):1011–1020.  https://doi.org/10.1007/s00359-009-0475-y Google Scholar
  107. Wendler G (1964) Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48(2):198–250.  https://doi.org/10.1007/BF00297860 Google Scholar
  108. Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103(1):20–30PubMedGoogle Scholar
  109. Wilson DM (1966) Insect walking. Annu Rev Entomol 11(1):103–122.  https://doi.org/10.1146/annurev.en.11.010166.000535 PubMedGoogle Scholar
  110. Wittlinger M, Wehner R, Wolf H (2006) The ant odometer: stepping on stilts and stumps. Science 312(5782):1965–1967.  https://doi.org/10.1126/science.1126912 PubMedGoogle Scholar
  111. Wöhrl T, Reinhardt L, Blickhan R (2017) Propulsion in hexapod locomotion: how do desert ants traverse slopes? J Exp Biol 220(9):1618–1625.  https://doi.org/10.1242/jeb.137505 PubMedGoogle Scholar
  112. Wosnitza A, Bockemühl T, Dübbert M, Scholz H, Büschges A (2013) Inter-leg coordination in the control of walking speed in Drosophila. J Exp Biol 216(3):480–491.  https://doi.org/10.1242/jeb.078139 PubMedGoogle Scholar
  113. Zill SN, Schmitz J, Büschges A (2004) Load sensing and control of posture and locomotion. Arthropod Struct Dev 33(3):273–286.  https://doi.org/10.1016/j.asd.2004.05.005 PubMedGoogle Scholar
  114. Zill SN, Keller BR, Duke ER (2009) Sensory signals of unloading in one leg follow stance onset in another leg: transfer of load and emergent coordination in cockroach walking. J Neurophysiol 101(5):2297–2304.  https://doi.org/10.1152/jn.00056.2009 PubMedGoogle Scholar
  115. Zill SN, Keller BR, Chaudhry S, Duke ER, Neff D, Quinn R, Flannigan C (2010) Detecting substrate engagement: responses of tarsal campaniform sensilla in cockroaches. J Comp Physiol A 196(6):407–420.  https://doi.org/10.1007/s00359-010-0526-4 Google Scholar
  116. Zill SN, Büschges A, Schmitz J (2011) Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus. J Comp Physiol A 197(8):851–867.  https://doi.org/10.1007/s00359-011-0647-4 Google Scholar
  117. Zill SN, Schmitz J, Chaudhry S, Büschges A (2012) Force encoding in stick insect legs delineates a reference frame for motor control. J Neurophysiol 108(5):1453–1472.  https://doi.org/10.1152/jn.00274.2012 PubMedPubMedCentralGoogle Scholar
  118. Zill SN, Chaudhry S, Büschges A, Schmitz J (2013) Directional specificity and encoding of muscle forces and loads by stick insect tibial campaniform sensilla, including receptors with round cuticular caps. Arthropod Struct Dev 42(6):455–462.  https://doi.org/10.1016/j.asd.2013.10.001 PubMedGoogle Scholar
  119. Zill SN, Chaudhry S, Exter A, Büschges A, Schmitz J (2014) Positive force feedback in development of substrate grip in the stick insect tarsus. Arthropod Struct Dev 43(5):441–455.  https://doi.org/10.1016/j.asd.2014.06.002 PubMedGoogle Scholar
  120. Zill SN, Chaudhry S, Büschges A, Schmitz J (2015) Force feedback reinforces muscle synergies in insect legs. Arthropod Struct Dev 44(6):541–553.  https://doi.org/10.1016/j.asd.2015.07.001 PubMedGoogle Scholar
  121. Zollikofer CPE (1994) Stepping patterns in ants. I. Influence of speed and curvature. J Exp Biol 192(1):95–106PubMedGoogle Scholar
  122. Zurek DB, Gilbert C (2014) Static antennae act as locomotory guides that compensate for visual motion blur in a diurnal, keen-eyed predator. Proc R Soc B 281(1779):20133072.  https://doi.org/10.1098/rspb.2013.3072 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Biological Cybernetics, Faculty of BiologyBielefeld UniversityBielefeldGermany
  2. 2.Cognitive Interaction Technology - Center of ExcellenceBielefeld UniversityBielefeldGermany
  3. 3.Applied Cognitive Psychology, Institute of Psychology and EducationUlm UniversityUlmGermany

Personalised recommendations