The ecological and genetic basis of annual worker production in the desert seed harvesting ant, Veromessor pergandei

  • Christina L. KwapichEmail author
  • Jürgen Gadau
  • Bert Hölldobler
Original Article


Colony size is an important predictor of annual survival and reproduction in social insects. By tracking monthly forager turn over, we measured the size-specific production rates necessary to counteract forager mortality in wild Veromessor pergandei colonies. Between 31,180 and 237,980 individuals appeared as foragers annually, representing an eightfold difference in production between neighboring nests. Highly productive colonies housed 26,000 foragers at one time, turned over 34,000 foragers in a single month, and produced 470 g of worker biomass during the year. Each forager population turned over approximately 20 times during the year, cumulatively returning 3.4 kg of biomass per hectare (with 14 nests per hectare). Forager longevity was not influenced by forager number, season, or pressure from neighboring conspecifics. Genotyping at three microsatellite loci revealed that all colonies contained a single queen and one to seven patrilines (mean m observed = 3.8; m e  = 2.56). The most productive colonies had significantly fewer patrilines, a larger peak forager population, and a larger annual foraging range. Colonies varied in their ability to replace lost workers, adding anywhere from 2 to 42 new foragers per death during peak forager allocation. Seasonal increases in forager population size corresponded to decreases in worker body size, suggesting a trade-off during production earlier in the year. Together, these findings demonstrate how the combination of individual colony-member characteristics influence whole colony survival across multiple years.

Significance statement

The survival of an animal society can depend on its size and stability. We measured the seasonal relationships between mortality and production of new colony members, with respect to foraging range size, paternity, neighbor pressure, and body size in a desert seed harvesting ant. Mortality rate was stable across seasons, but the ability of colonies to replace dead individuals corresponded to increased foraging range size, decreased patriline number, and seasonal decreases in body size. Our findings reveal the characteristics that allow colonies to respond to worker mortality on an annual scale.


Colony size Worker production Patriline number Ant biomass Mortality rate 



We would like to thank Yocha DeChavez for her tireless and careful assistance in the laboratory and field and Scott Bingham for his support at the ASU DNA core facility. We are also grateful for the thoughtful discussions and advice from Robert A. Johnson, Walter Tschinkel, Ti Ericksson, Erick Lundgren, the Social Insect Research Group at ASU, and two anonymous reviewers. This study was made possible with permission from South Mountain Regional Park, Phoenix, AZ.

Supplementary material

265_2017_2333_MOESM2_ESM.png (740 kb)
ESM 1 Example of counting procedure for each forager sample (PNG 739 kb)
265_2017_2333_MOESM3_ESM.png (3.4 mb)
ESM 2 Example of counting procedure of marked foragers recatured after 24 h, pictured under UV light (PNG 3514 kb)
265_2017_2333_MOESM4_ESM.png (43 kb)
ESM 3 Analysis of size free changes in allocation between months revealed three main foraging trajectories. Colonies with high variation in forager number between months, greater average annual production, larger annual foraging range size fell into cluster A (Vp29,24,199,28), or cluster B (Vp25,200), depending on timing of peak forager allocation. Cluster C was defined by low variation between months, and smaller annual foraging range (Vp23, 30). (PNG 43 kb)


  1. Adams ES (2016) Territoriality in ants (Hymenoptera: Formicidae): a review. Myrmecol News 23:101–118Google Scholar
  2. Bailey NTJ (1952) Improvements in the interpretation of recapture data. J Anim Ecol 21:120–127. doi: 10.2307/1913 CrossRefGoogle Scholar
  3. Boulay R, Arnan X, Cerdá X, Retana J (2014) The ecological benefits of larger colony size may promote polygyny in ants. J Exp Biol 27:2856–2863. doi: 10.1111/jeb.12515 Google Scholar
  4. Cerdá X, Dahbi A, Retana J (2002) Spatial patterns, temporal variability, and the role of multi-nest colonies in a monogynous Spanish desert ant. Ecolo Entomol 27:7–15. doi: 10.1046/j.0307-6946.2001.00386.x CrossRefGoogle Scholar
  5. Cole BJ, Wiernasz DC (1999) The selective advantage of low relatedness. Science (Washington, DC) 285:891-893 doi: doi: 10.1126/science.285.5429.891
  6. Cole BJ, Wiernasz DC (2000) Colony size and reproduction in the western harvester ant, Pogonomyrmex occidentalis. Insect Soc 47:249–255. doi: 10.1007/PL00001711 CrossRefGoogle Scholar
  7. Cook JM, Crozier RH (1995) Sex determination and population biology in the hymenoptera. Trends Ecol Evol 10:281–286CrossRefPubMedGoogle Scholar
  8. Davidson DW (1978) Size variability in the worker caste of a social insect (Veromessor pergandei Mayr) as a function of the competitive environment. Am Nat 112:523–532. doi: 10.1086/283294 CrossRefGoogle Scholar
  9. Elmes GW (1987) Temporal variation in colony populations of the ant Myrmica sulcinodis. Ii. Sexual production and sex ratios. J Anim Ecol 56:573–583CrossRefGoogle Scholar
  10. Fewell JH, Harrison JF (2016) Scaling of work and energy use in social insect colonies. Behav Ecol Sociobiol 70:1047–1061. doi: 10.1007/s00265-016-2097-z CrossRefGoogle Scholar
  11. Fletcher DJC, Blum MS, Whitt TV, Temple N (1980) Monogyny and polygyny in the fire ant, Solenopsis invicta. Ann Entomol Soc Am 73:658–661CrossRefGoogle Scholar
  12. Fowler HG (1986) Polymorphism and colony ontogeny in North American carpenter ants (Hymenoptera: Formicidae: Camponotus pennsylvanicus and Camponotus ferrugineus). Zool Jahrb Abt Allg Zool Physiol Tiere 90:297–316Google Scholar
  13. Franks NR, Tofts C (1994) Foraging for work: how tasks allocate workers. Anim Behav 48:470–472CrossRefGoogle Scholar
  14. Genolini C, Falissard B (2011) Kml: a package to cluster longitudinal data. Comput Methods Prog Biomed 104:e112–e121. doi: 10.1016/j.cmpb.2011.05.008 CrossRefGoogle Scholar
  15. Gentry JB (1974) Response to predation by colonies of the Florida harvester ant, Pogonomyrmex badius. Ecology 55:1328–1338CrossRefGoogle Scholar
  16. Giraldo YM, Traniello JFA (2014) Worker senescence and the sociobiology of aging in ants. Behav Ecol Sociobiol 68:1901–1919. doi: 10.1007/s00265-014-1826-4 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Giraldo YM et al (2016) Lifespan behavioural and neural resilience in a social insect. Proc R Soc Lond [Biol] 283. doi: 10.1098/rspb.2015.2603
  18. Gordon SH (1978) Food and foraging ecology of a desert harvester ant, Veromessor pergandei (Mayr). Dissertation, UC BerkeleyGoogle Scholar
  19. Helms Cahan S (2001) Ecological variation across a transition in colony-founding behavior in the ant Messor pergandei. Oecol 129:629–635. doi: 10.1007/s004420100761 CrossRefGoogle Scholar
  20. Helms KR, Helms Cahan S (2012) Large-scale regional variation in cooperation and conflict among queens of the desert ant Messor pergandei. Anim Behav 84:499–507. doi: 10.1016/j.anbehav.2012.05.019 CrossRefGoogle Scholar
  21. Hölldobler B (1986) Food robbing in ants, a form of interference competition. Oecolo 69:12–15. doi: 10.1007/BF00399031 CrossRefGoogle Scholar
  22. Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210:732–739. doi: 10.1126/science.210.4471.732 CrossRefPubMedGoogle Scholar
  23. Hölldobler B, Wilson EO (1977) The number of queens: an important trait in ant evolution. Sci Nat 64:8–15. doi: 10.1007/BF00439886 CrossRefGoogle Scholar
  24. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  25. Hughes WOH, Sumner S, Van Borm S, Boomsma JJ (2003) Worker caste polymorphism has a genetic basis in Acromyrmex leaf-cutting ants. Proc Nat Acad Sci 100:9394–9397. doi: 10.1073/pnas.1633701100 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Johnson RA (2006a) Capital and income breeding and the evolution of colony founding strategies in ants. Insect Soc 53:316–322. doi: 10.1007/s00040-006-0874-9
  27. Johnson RA (2006b) Biogeographical parallels between plants and ants in North American deserts (Hymenoptera: Formicidae; Spermatophyta). Myrmecol Nachr 8:209–218Google Scholar
  28. Johnson RA, Kaiser A, Quinlan M, Sharp W (2011) Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei. J Exp Biol 214:3495–3506. doi: 10.1242/jeb.054304 CrossRefPubMedGoogle Scholar
  29. Johnston AB, Wilson EO (1985) Correlates of variation in major/minor ratio in the ant, Pheidole dentata (Hymenoptera: Formicidae). Ann Entomol Soc Am 78:8–11CrossRefGoogle Scholar
  30. Keeler KH (1993) Fifteen years of colony dynamics in Pogonomyrmex occidentalis, the western harvester ant, in western Nebraska. Southwest Nat 38:286–289. doi: 10.2307/3671438 CrossRefGoogle Scholar
  31. Kramer BH, Schrempf A, Scheuerlein A, Heinze J (2015) Ant colonies do not trade-off reproduction against maintenance. PLoS One 10:e0137969. doi: 10.1371/journal.pone.0137969 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kwapich CL, Tschinkel WR (2013) Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav Ecol Sociobiol 67:2011–2027. doi: 10.1007/s00265-013-1611-9 CrossRefGoogle Scholar
  33. Kwapich CL, Tschinkel WR (2016) Limited flexibility and unusual longevity shape forager allocation in the Florida harvester ant (Pogonomyrmex badius). Behavl Ecol Sociobiol 70:221–235. doi: 10.1007/s00265-015-2039-1 CrossRefGoogle Scholar
  34. Lincoln FC (1930) Calculating waterfowl abundance on the basis of banding returns. USDA Circular 118:1–4Google Scholar
  35. Macom TE, Porter SD (1996) Comparison of polygyne and monogyne red imported fire ants (Hymenoptera: Formicidae) population densities. Ann Entomol Soc Am 89:535–543CrossRefGoogle Scholar
  36. Mercier B, Passera L, Suzzoni JP (1985) Étude De La Polygynie Chez La Fourmi Plagiolepis pygmaea Latr. (Hym. Formicidae) Ii. La Fécondité Des Reines En Condition Expérimentale Polygyne. Insect Soc 32:349–362. doi: 10.1007/BF02224013 CrossRefGoogle Scholar
  37. Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093. doi: 10.1126/science.1234316 CrossRefPubMedGoogle Scholar
  38. Moilanen A, Sundström L, Pedersen J (2004) Matesoft: a program for deducing parental genotypes and estimating mating system statistics in haplodiploid species. Mol Ecol Notes 4:795–797CrossRefGoogle Scholar
  39. Ode PJ, Rissing SW (2002) Resource abundance and sex allocation by queen and workers in the harvester ant, Messor pergandei. Behav Ecol Sociobiol 51:548–556. doi: 10.1007/s00265-002-0462-6 CrossRefGoogle Scholar
  40. Plowes N, Johnson R, Hölldobler B (2013) Foraging behavior in the ant genus Messor (Hymenoptera: Formicidae: Myrmicinae). Myrmecol News 18:33–49Google Scholar
  41. Pollock GB, Rissing SW (1985) Mating season and colony foundation of the seed-harvester ant, Veromessor pergandei. Psyche 92:125–134. doi: 10.1155/1985/87410 CrossRefGoogle Scholar
  42. Porter SD, Jorgensen CD (1980) Recapture studies of the harvester ant, Pogonomyrmex Owyheei Cole, using a fluorescent marking technique. Ecol Entomol 5:263–269. doi: 10.1111/j.1365-2311.1980.tb01149.x CrossRefGoogle Scholar
  43. Rissing SW (1987) Annual cycles in worker size of the seed-harvester ant Veromessor pergandei (Hymenoptera: Formicidae). Behav Ecol Sociobiol 20:117–124. doi: 10.1007/BF00572633 CrossRefGoogle Scholar
  44. Rissing SW, Pollock GB (1984) Worker size variability and foraging efficiency in Veromessor pergandei (Hymenoptera: Formicidae). Behav Ecol Sociobiol 15:121–126. doi: 10.1007/bf00299379 CrossRefGoogle Scholar
  45. Schmid-Hempel P (1982) Foraging ecology and colony structure of two sympatric species of desert ants, Cataglyphis bicolor and Cataglyphis albicans. Doctoral Dissertation, Universität ZürichGoogle Scholar
  46. Schmid-Hempel P, Schmid-Hempel R (1984) Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect Soc 31:345–360. doi: 10.1007/BF02223652 CrossRefGoogle Scholar
  47. Shik JZ (2008) Ant colony size and the scaling of reproductive effort. Funct Ecol 22:674–681. doi: 10.1111/j.1365-2435.2008.01428.x CrossRefGoogle Scholar
  48. Simone-Finstrom M, Walz M, Tarpy DR (2016) Genetic diversity confers colony-level benefits due to individual immunity. Biol Lett 12:20151007. doi: 10.1098/rsbl.2015.1007 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Smith CR, Tschinkel WR (2006) The sociometry and sociogenesis of reproduction in the Florida harvester ant, Pogonomyrmex badius. J Insect Sci 6:1–11. doi: 10.1673/2006_06_32.1 CrossRefPubMedGoogle Scholar
  50. Smith CR, Anderson KE, Tillberg CV, Gadau J, Suarez AV (2008) Caste determination in a polymorphic social insect: nutritional, social, and genetic factors. Am Nat 172:497–507. doi: 10.1086/590961 CrossRefPubMedGoogle Scholar
  51. Smith ML, Ostwald MM, Loftus JC, Seeley TD (2014) A critical number of workers in a honeybee colony triggers investment in reproduction. Sci Nat 101:783–790. doi: 10.1007/s00114-014-1215-x CrossRefGoogle Scholar
  52. Tschinkel WR (1988a) Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 22:103–115. doi: 10.1007/BF00303545 CrossRefGoogle Scholar
  53. Tschinkel WR, Porter S (1988) Efficiency of sperm use in queens of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Ann Entomol Soc Am 81:777–781Google Scholar
  54. Tschinkel WR (1993) Sociometry and sociogenesis of colonies of the fire ant Solenopsis invicta during one annual cycle. Ecol Monogr 64:425–457CrossRefGoogle Scholar
  55. Tschinkel WR (2006) The fire ants. In. Harvard University Press, Cambridge, p 747. 716 p. of platesGoogle Scholar
  56. Tschinkel WR (2011) The organization of foraging in the fire ant, Solenopsis invicta. J Insect Sci 11:26. doi: 10.1673/031.011.0126 PubMedPubMedCentralGoogle Scholar
  57. Tschinkel WR (2017) Lifespan, age, size-specific mortality and dispersion of colonies of the Florida harvester ant, Pogonomyrmex badius. Insect Soc 64:285–296. doi: 10.1007/s00040-017-0544-0 CrossRefGoogle Scholar
  58. Tschinkel WR, Adams ES, Macom T (1995) Territory area and colony size in the fire ant, Solenopsis invicta. J Anim Ecol 64:473–480CrossRefGoogle Scholar
  59. Went FW, Wheeler J, Wheeler GC (1972) Feeding and digestion in some ants (Veromessor and Manica). Bioscience 22:82–88CrossRefGoogle Scholar
  60. Wheeler J, Rissing SW (1975) Natural history of Veromessor pergandei. II. Behavior (Hymenoptera: Formicidae). Pan-Pac Entomol 51:303–314Google Scholar
  61. Wheeler, Wheeler (1976) Ant larvae: review and synthesis vol 7. Memoirs of the entomological society of Washington. Entomological Society of Washington, Washington, D.C.Google Scholar
  62. Wiernasz DC, Cole BJ (1995) Spatial distribution of Pogonomyrmex occidentalis: recruitment, mortality and overdispersion. J Anim Ecol 64:519–527. doi: 10.2307/5654 CrossRefGoogle Scholar
  63. Wiernasz DC, Hines J, Parker DG, Cole BJ (2008) Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Molec Ecol 17:1137–1144. doi: 10.1111/j.1365-294X.2007.03646.x CrossRefGoogle Scholar
  64. William OHH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58:1251–1260CrossRefGoogle Scholar
  65. Wilson EO (1983) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) iii. Ergonomic resiliency in foraging by Atta cephalotes. Behav Ecol Sociobiol 14:47–54. doi: 10.1007/BF00366655 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Christina L. Kwapich
    • 1
    Email author
  • Jürgen Gadau
    • 1
    • 2
  • Bert Hölldobler
    • 1
    • 3
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Institute for Evolution and BiodiversityUniversität MünsterMünsterGermany
  3. 3.Universität Würzburg, BiozentrumWürzburgGermany

Personalised recommendations