Behavioral Ecology and Sociobiology

, Volume 70, Issue 8, pp 1257–1265 | Cite as

Resource availability influences aggression and response to chemical cues in the Neotropical termite Nasutitermes aff. coxipoensis (Termitidae: Nasutitermitinae)

  • Paulo F. Cristaldo
  • Ana P. A. Araújo
  • Camilla S. Almeida
  • Nayara G. Cruz
  • Efrem J. M. Ribeiro
  • Marcos L. C. Rocha
  • Alisson S. Santana
  • Abraão A. Santos
  • Alexandre Passos
  • Og De Souza
  • Daniela F. Florencio
Original Article

Abstract

Behavioural responses of organisms are frequently affected by variation in resource availability. For eusocial insects, the nutritional status of the colony can modulate responses to chemical cues determining intra- and inter-colonial aggressiveness. Species co-occurrence in termites seems to be modulated by resource availability. Here, we tested the effects of resource availability on acceptance of chemical cues and aggressive behaviour in the Neotropical termite Nasutitermes aff. coxipoensis (Termitidae: Nasutitermitinae). Nasutitermes aff. coxipoensis nests were transplanted into three plots in which resource availability was manipulated over 4 months. Experiments were carried out to evaluate: (i) colony response to internal chemical cues and those of neighbouring colonies reared under the same resource levels; (ii) the choice among chemical paths of colonies reared at different resource levels; and (iii) inter-colony aggression to nestmates and to neighbouring colonies reared under the same resource levels. Our results suggest that resource availability affects acceptance of chemical cues, path choice and aggression in N. aff. coxipoensis. Resource availability may thus modulate behavioural responses influencing coexistence between termite species and other taxa at different spatial scales.

Significance statement

Environmental resource availability is known to limit a range of traits in animals and plants. Here, we report that resource availability is also responsible for changes in behavioural responses of termites. The behavioural modifications found in the present study contribute to our comprehension of ecological patterns in this important ecological group. This work increases our understanding of mechanisms of co-occurrence and coexistence of termite species, as well as patterns of termite species richness in distinct biomes.

Keywords

Chemical perception Eavesdropping Fighting Foraging Nutritional status Olfactory cues Social information 

Supplementary material

265_2016_2134_MOESM1_ESM.docx (359 kb)
ESM 1(DOCX 358 kb)

References

  1. Adams ES (1990) Interaction between the ants Zacryptocerus maculatus and Azteca trigona: interspecific parasitization of information. Biotropica 22:200–206CrossRefGoogle Scholar
  2. Adams ES, Levings SC (1987) Territory size and population limits in mangrove termites. Br Ecol Soc 56:1069–1081Google Scholar
  3. Almeida CS, Cristaldo PF, Florencio DF et al (2016) Combined foraging strategies and soldier behaviour in Nasutitermes aff. coxipoensis (Blattodea: Termitoidea: Termitidae). Behav Process 126:76–81CrossRefGoogle Scholar
  4. Araújo APA (2009). Regulation of foraging areas and structuring of termite communities. PhD Thesis (Entomology), Federal University of Viçosa, Brazil.Google Scholar
  5. Bélisle M (2005) Measuring landscape connectivity: the challenge of special feature. Ecology 86:1988–1995CrossRefGoogle Scholar
  6. Binz H, Foitzik S, Staab F, Menzel F (2014) The chemistry of competition: exploitation of heterospecific cues depends on the dominance rank in the community. Anim Behav 94:45–53. doi:10.1016/j.anbehav.2014.05.024 CrossRefGoogle Scholar
  7. Bland JM, Osbrink WLA, Cornelius ML et al (2001) Solid-phase microextraction for the detection of termite cuticular hydrocarbons. J Chromatogr 932:119–127CrossRefGoogle Scholar
  8. Boogert NJ, Hofstede FE, Monge IA (2006) The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity. Apidologie 37:366–375. doi:10.1051/apido CrossRefGoogle Scholar
  9. Crawley MJ (2007) The R Book. Wiley, Chichester, 942 ppCrossRefGoogle Scholar
  10. Cristaldo PF, Desouza O, Krasulova J et al (2014) Mutual use of trail-following chemical cues by a termite host and its inquiline. Plos One 9:e85315. doi:10.1371/journal.pone.0085315
  11. DeSouza O, Araújo APA, Reis-Jr R (2009) Trophic controls delaying foraging by termites: reasons for the ground being brown? Bull Entomol Res 99:603–609. doi:10.1017/S000748530900666X CrossRefPubMedGoogle Scholar
  12. Eltz T, Brühl CA, van der Kaars S, Linsenmair KE (2002) Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia 131:27–34. doi:10.1007/s00442-001-0848-6 CrossRefGoogle Scholar
  13. Evans TA, Inta R, Lai JCS et al (2009) Termites eavesdrop to avoid competitors. Proc R Soc B 276:4035–4041. doi:10.1098/rspb.2009.1147 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fisher J (1954) Evolution and bird sociality. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, pp 71–83Google Scholar
  15. Florane CB, Bland JM, Husseneder C, Raina AK (2004) Diet-mediated inter-colonial aggression in the Formosan subterranean termite Coptotermes formosanus. J Chem Ecol 30:2559–2574CrossRefPubMedGoogle Scholar
  16. Gabor CR, Jaeger RG (1995) Resource quality affects the agonistic behaviour of territorial salamanders. Anim Behav 49:71–79CrossRefGoogle Scholar
  17. Grover CD, Kay AD, Monson JA, et al (2007) Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proc R Soc B 2951–2957. doi: 10.1098/rspb.2007.1065.
  18. Hangartner W (1970) Control of pheromone quantity in odour trails of the ant Acanthomyops interjectus MAYR. Experientia 26:664–665CrossRefPubMedGoogle Scholar
  19. Hartke TR, Baer B (2011) The mating biology of termites: a comparative review. Anim Behav 82:927–936. doi:10.1016/j.anbehav.2011.07.022 CrossRefGoogle Scholar
  20. Jarau S (2009) Chemical communication during food exploitation in stingless bees. In: Jarau S, Hrncir M (eds) Food exploitation by social insects: ecological. Behavioral and theoretical approaches. CRC Spress, Boca Raton, pp 223–249CrossRefGoogle Scholar
  21. Kaib M, Franke S, Francke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and a neighbour ± stranger effect. Physiol Entomol 27:189–198CrossRefGoogle Scholar
  22. Kaib M, Jmhasly P, Wilfert L et al (2004) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30:365–385CrossRefPubMedGoogle Scholar
  23. Korb J, Foster KR (2010) Ecological competition favours cooperation in termite societies. Ecol Lett 13:754–760. doi:10.1111/j.1461-0248.2010.01471.x CrossRefPubMedGoogle Scholar
  24. Korb J, Linsenmair KE (1998) The effects of temperature on the architecture and distribution of Macrotermes bellicosus (Isoptera, Macrotermitinae) mounds in different habitats of a West African Guinea savanna. Insect Soc 45:51–65CrossRefGoogle Scholar
  25. Korb J, Roux EA (2012) Why join a neighbour: fitness consequences of colony fusions in termites. J Evol Biol 1–10. doi: 10.1111/j.1420-9101.2012.02617.x.
  26. Liang D, Silverman J (2000) “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412–416CrossRefPubMedGoogle Scholar
  27. Liang D, Blomquist GJ, Silverman J (2001) Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp Biochem Physiol B 129:871–882. doi:10.1016/S1096-4959(01)00404-3 CrossRefPubMedGoogle Scholar
  28. Lichtenberg EM, Hrncir M, Turatti IC, Nieh JC (2011) Olfactory eavesdropping between two competing stingless bee species. Behav Ecol Sociobiol 65:763–774. doi:10.1007/s00265-010-1080-3 CrossRefPubMedGoogle Scholar
  29. Menzel F, Pokorny T, Blüthgen N, Schmitt T (2010) Trail-sharing among tropical ants: interspecific use of trail pheromones? Ecol Entomol 35:495–503. doi:10.1111/j.1365-2311.2010.01206.x CrossRefGoogle Scholar
  30. Molet M, Chittka L, Stelzer RJ et al (2008) Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behav Ecol Sociobiol 62:1919–1926. doi:10.1007/s00265-008-0623-3 CrossRefGoogle Scholar
  31. Peake TM (2005) Eavesdropping in communication networks. In: Animal Communication Networks. pp 13–35.Google Scholar
  32. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, AustriaGoogle Scholar
  33. SEPLAN/SUPES (2009) Sergipe em dados. Aracaju: v.10 il. IOP Publishing PhysicWeb. http://www.seplag.se.gov.br/attachments/article/1385/sergipe_em_dados_2009.pdf. Acessed 15 december 2014
  34. Shellman-Reeve JS (1994) Limited nutrients in a dampwood termite: nest preference, competition and cooperative nest defence. J Anim Ecol 63:921–932. doi:10.2307/5269 CrossRefGoogle Scholar
  35. Sorvari J, Hakkarainen H (2004) Habitat-related aggressive behaviour between neighbouring colonies of the polydomous wood ant Formica aquilonia. Anim Behav 67:151–153. doi:10.1016/j.anbehav.2003.03.009 CrossRefGoogle Scholar
  36. Sorvari J, Pascal T, Stefano T et al (2008) Food resources, chemical signalling, and nest mate recognition in the ant Formica aquilonia. Behav Ecol. doi:10.1093/beheco/arm160 Google Scholar
  37. Toth AL, Kantarovich S, Meisel AF, Robinson GE (2005) Nutritional status influences socially regulated ontogeny in honey bees nutritional status influences socially regulated foraging ontogeny in honey bees. J Exp Biol 208:4641–4649. doi:10.1242/jeb.01956 CrossRefPubMedGoogle Scholar
  38. Valone TJ (2007) From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav Ecol Sociobiol 62:1–14. doi:10.1007/s00265-007-0439-6 CrossRefGoogle Scholar
  39. Vogel ER, Janson CH (2007) Predicting the frequency of food-related agonism in white-faced capuchin monkeys (Cebus capucinus), using a novel focal-tree method. Am J Primatol 550:533–550. doi:10.1002/ajp CrossRefGoogle Scholar
  40. Wagner RH, Danchin E (2010) A taxonomy of biological information. Oikos. doi:10.1111/j.1600-0706.2009.17315.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Paulo F. Cristaldo
    • 1
  • Ana P. A. Araújo
    • 1
  • Camilla S. Almeida
    • 1
    • 2
  • Nayara G. Cruz
    • 1
    • 2
  • Efrem J. M. Ribeiro
    • 1
  • Marcos L. C. Rocha
    • 1
  • Alisson S. Santana
    • 3
  • Abraão A. Santos
    • 3
  • Alexandre Passos
    • 3
  • Og De Souza
    • 4
  • Daniela F. Florencio
    • 5
  1. 1.Ecological Interactions Laboratory, Department of EcologyFederal University of SergipeSão CristóvãoBrazil
  2. 2.Graduate Program in Ecology and ConservationFederal University of SergipeSão CristovãoBrazil
  3. 3.Phytosanitary ClinicFederal University of SergipeSão CristóvãoBrazil
  4. 4.Termitology Laboratory, Department of EntomologyFederal University of ViçosaMinas GeraisBrazil
  5. 5.Department of Agrotechnology and Social SciencesRural Semi-Arid Federal UniversityMossoróBrazil

Personalised recommendations