Behavioral Ecology and Sociobiology

, Volume 70, Issue 7, pp 1075–1085 | Cite as

A comparative perspective on the ecology of morphological diversification in complex societies: nesting ecology and soldier evolution in the turtle ants

Original Article


This work uses a comparative framework to address the adaptive evolutionary relationship between nesting ecology and the morphological diversification of the soldier caste in turtle ants (Cephalotes). Turtle ant colonies nest in pre-existing arboreal cavities, and soldiers specialize in colony defense by blocking cavity entrances with their armored heads. Analyses were focused on three major axes of soldier morphological diversification: discrete morphotype, head size, and head-size range (i.e., soldier polymorphism). The analyses showed that while all species use some entrances small enough to fit the head of one soldier, specialization on entrances that tightly fit the head of one soldier was only seen in species with the most specialized soldier morphotype. They also showed that the degree of soldier polymorphism was only positively correlated with the typical range of entrances in species with the most specialized morphotype. Overall, these findings indicated that a tight 1:1 size-matching between available soldier head sizes and selected entrance sizes is limited to species with the most specialized soldier morphotype, while species with less specialized morphotypes use a broader range of larger entrances. Together, these findings suggest a new general hypothesis for the adaptive diversification of caste systems: major shifts in ecological specialization drive the evolution of novel caste morphotypes, while minor expansions and contractions of an existing resource range shape the evolution of the size distribution of an existing caste. Broadly, these findings highlight the possibility for complex coupling and decoupling between different axes of caste diversification in lineages with complex social phenotypes.

Significance statement

One key way in which complex "organismal societies" have diversified in form and function is via the evolution of morphologically distinct "castes" that specialize on particular social roles. Nevertheless, how ecological interactions shape caste diversification within social lineages remains poorly understood. Using a comparative framework, this work addresses how nesting ecology has shaped the diversification of an elaborate soldier caste in the turtle ants. The evolution of more specialized soldier types was associated with substantial shifts in nest-entrance specialization, while in species with the most specialized soldier type, there was also a match between head sizes and entrance sizes within and across species. These findings suggest the general hypothesis that the evolution of novel caste types is driven by major shifts in ecological specialization, while the size distribution of existing castes tracks minor shifts in resource use.


Caste evolution Social organization Ecological specialization Size-matching Cephalotes 



This work is indebted to the taxonomic work on the genus Cephalotes by many authors, and especially the most recent, synthetic treatment of the group by M. L. de Andrade and C. Baroni Urbani. I thank Kleber Del Claro, Heraldo Vasconcelos, and Corrie Moreau for help with fieldwork logistics. I also thank the editor and two anonymous reviewers for valuable comments on an earlier version of the manuscript. This work was supported by NSF grant DEB 0842144, an 1851 Research Fellowship from the Royal Commission for the Exhibition of 1851, and research funds from the George Washington University.


  1. Arnold SJ (2003) Performance surfaces and adaptive landscapes. Integr Comp Biol 43:367–375. doi: 10.1093/icb/43.3.367 CrossRefPubMedGoogle Scholar
  2. Baroni Urbani C (1998) The number of castes in ants, where major is smaller than minor and queens wear the shield of the soldiers. Insect Soc 45:315–333. doi: 10.1007/s000400050091 CrossRefGoogle Scholar
  3. Billick I (2002) The relationship between the distribution of worker sizes and new worker production in the ant Formica neorufibarbis. Oecologia 132:244–249. doi: 10.1007/s00442-002-0976-7 CrossRefGoogle Scholar
  4. Blomberg SP, Garland T Jr, Ives AR, Crespi B (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745. doi: 10.1554/0014-3820(2003)057[0717:tfpsic];2
  5. Bourke AFG (2011) Principles of social evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  6. Burd M (2000) Body size effects on locomotion and load carriage in the highly polymorphic leaf-cutting ants Atta colombica and Atta cephalotes. Behav Ecol 11:125–131. doi: 10.1093/beheco/11.2.125 CrossRefGoogle Scholar
  7. Camarota F, Powell S, Vasconcelos HL et al (2015) Extrafloral nectaries have a limited effect on the structure of arboreal ant communities in a Neotropical savanna. Ecology 96:231–240. doi: 10.1890/14-0264.1 CrossRefPubMedGoogle Scholar
  8. Creighton WS (1963) Further studies on the habits of Cryptocerus texanus Santschi (Hymenoptera: Formicidae). Psyche 70:133–143. doi: 10.1155/1963/78162 CrossRefGoogle Scholar
  9. Creighton WS, Gregg RE (1954) Studies on the habits and distribution of Cryptocerus texanus Santschi (Hymenoptera: Formicidae). Psyche 61:41–57. doi: 10.1155/1954/37696 CrossRefGoogle Scholar
  10. Creighton WS, Nutting WL (1965) The habits and distribution of Cryptocerus rohweri Wheeler (Hymenoptera: Formicidae). Psyche 72:59–64. doi: 10.1155/1965/79407 CrossRefGoogle Scholar
  11. Cruz YP (1981) A sterile defender morph in a polyembryonic hymenopterous parasite. Nature 294:446–447. doi: 10.1038/294446a0 CrossRefGoogle Scholar
  12. Darwin C (1859) On the origin of species. (Facsimile of 1st edition, 1964). Harvard University Press, CambridgeGoogle Scholar
  13. de Andrade ML, Baroni Urbani C (1999) Diversity and adaptation in the ant genus Cephalotes, past and present. Stuttgarter Beitr Naturk Ser B 271:1–889Google Scholar
  14. Dornhaus A, Powell S (2010) Foraging and defence strategies. In: Lach L, Parr CL, Abott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 210–230Google Scholar
  15. Duffy JE (1996) Eusociality in a coral-reef shrimp. Nature 381:512–514. doi: 10.1038/381512a0 CrossRefGoogle Scholar
  16. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15. doi: 10.1086/284325
  17. Grafen A (1989) The phylogenetic regression. Phil Trans R Soc B 326:119–157. doi: 10.1098/rstb.1989.0106 CrossRefPubMedGoogle Scholar
  18. Grüter C, Menezes C, Imperatriz-Fonseca VL, Ratnieks FLW (2012) A morphologically specialized soldier caste improves colony defense in a neotropical eusocial bee. PNAS 109:1182–1186. doi: 10.1073/pnas.1113398109 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hasegawa E (1993) Nest defense and early production of the major workers in the dimorphic ant Colobopsis nipponicus (Wheeler) (Hymenoptera : Formicidae). Behav Ecol Sociobiol 33:73–77. doi: 10.1007/BF00171658 CrossRefGoogle Scholar
  20. Hechinger RF, Wood AC, Kuris AM (2011) Social organization in a flatworm: trematode parasites form soldier and reproductive castes. Proc R Soc B 278:656–665. doi: 10.1098/rspb.2010.1753 CrossRefPubMedGoogle Scholar
  21. Irschick D, Dyer L, Sherry TW (2005) Phylogenetic methodologies for studying specialization. Oikos 110:404–408. doi: 10.2307/3548481?ref=no-x-route:4b549cd8ee0052f607e462ad017fdd31 CrossRefGoogle Scholar
  22. Irschick DJ, Meyers JJ, Husak JF, Le Galliard J-F (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res 10:177–196Google Scholar
  23. Kaspari M (1996) Worker size and seed size selection by harvester ants in a neotropical forest. Oecologia 105:397–404. doi: 10.1007/BF00328743 CrossRefGoogle Scholar
  24. Kempf WW (1951) A taxonomic study on the ant tribe Cephalotini (Hymenoptera: Formicidae). Revta Bras Ent 21:1–244Google Scholar
  25. Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175:623–639. doi: 10.1086/652433 CrossRefPubMedGoogle Scholar
  26. Losos JB (2011) Seeing the forest for the trees: the limitations of phylogenies in comparative biology. Am Nat 177:709–727. doi: 10.1086/660020 CrossRefPubMedGoogle Scholar
  27. Mcginley RH, Prenter J, Taylor W (2013) Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae): links with morphology and between performance traits. Biol J Linnean Soc 110:644–657. doi: 10.1111/bij.12155
  28. McLeish MJ, Chapman TW (2007) The origin of soldiers in the gall-inducing thrips of Australia (Thysanoptera : Phlaeothripidae). Aust J Entomol 46:300–304CrossRefGoogle Scholar
  29. Mertl A, Traniello J (2009) Behavioral evolution in the major worker subcaste of twig-nesting Pheidole (Hymenoptera: Formicidae): does morphological specialization influence task plasticity? Behav Ecol Sociobiol 63:1411–1426. doi: 10.1007/s00265-009-0797-3
  30. Moreau CS (2008) Unraveling the evolutionary history of the hyperdiverse ant genus Pheidole (Hymenoptera: Formicidae). Mol Phylogenet Evol 48:224–239. doi: 10.1016/j.ympev.2008.02.020 CrossRefPubMedGoogle Scholar
  31. Mowles SL, Cotton PA, Briffa M (2010) Whole-organism performance capacity predicts resource-holding potential in the hermit crab Pagurus bernhardus. Anim Behav 80:277–282. doi: 10.1016/j.anbehav.2010.05.004 CrossRefGoogle Scholar
  32. O'Riain MJ, Jarvis JUM, Alexander R et al (2000) Morphological castes in a vertebrate. PNAS 97:13194–13197CrossRefPubMedPubMedCentralGoogle Scholar
  33. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz SA, Isaac N, Pearse W (2015) caper: Comparative Analyses of Phylogenetics and Evolution in R version 0.5.2Google Scholar
  34. Oster GF, Wilson EO (1978) Caste and ecology in the social insects. Princeton University Press, PrincetonGoogle Scholar
  35. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884. doi: 10.1038/44766 CrossRefPubMedGoogle Scholar
  36. Pepper JW, Herron MD (2008) Does biology need an organism concept? Biol Rev 83:621–627. doi: 10.1111/j.1469-185X.2008.00057.x CrossRefPubMedGoogle Scholar
  37. Pie MR, Traniello JFA (2007) Morphological evolution in a hyperdiverse clade: the ant genus Pheidole. J Zool 271:99–109. doi: 10.1111/j.1469-7998.2006.00239.x CrossRefGoogle Scholar
  38. Porter SD, Tschinkel WR (1985) Fire ant polymorphism (Hymenoptera: Formicidae): factors affecting worker size. Ann Entomol Soc Am 78:381–386. doi: 10.1093/aesa/78.3.381 CrossRefGoogle Scholar
  39. Powell S (2008) Ecological specialization and the evolution of a specialized caste in Cephalotes ants. Func Ecol 22:902–911. doi: 10.1111/j.1365-2435.2008.01436.x CrossRefGoogle Scholar
  40. Powell S (2009) How ecology shapes caste evolution: linking resource use, morphology, performance and fitness in a superorganism. J Evol Biol 22:1004–1013. doi: 10.1111/j.1420-9101.2009.01710.x CrossRefPubMedGoogle Scholar
  41. Powell S, Dornhaus A (2013) Soldier-based defences dynamically track resource availability and quality in ants. Anim Behav 85:157–164. doi: 10.1016/j.anbehav.2012.10.020 CrossRefGoogle Scholar
  42. Powell S, Franks NR (2005) Caste evolution and ecology: a special worker for novel prey. Proc R Soc B 272:2173–2180. doi: 10.1098/rspb.2005.3196 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Powell S, Franks NR (2006) Ecology and the evolution of worker morphological diversity: a comparative analysis with Eciton army ants. Func Ecol 20:1105–1114. doi: 10.1111/j.1365-2435.2006.01184.x CrossRefGoogle Scholar
  44. Powell S, Franks NR (2007) How a few help all: living pothole plugs speed prey delivery in the army ant Eciton burchellii. Anim Behav 73:1067–1076. doi: 10.1016/j.anbehav.2006.11.005 CrossRefGoogle Scholar
  45. Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. J Anim Ecol 80:352–360. doi: 10.1111/j.1365-2656.2010.01779.x CrossRefPubMedGoogle Scholar
  46. Powell S, Del-Claro K, Feitosa RM, Brandão CRF (2014) Mimicry and eavesdropping enable a new form of social parasitism in ants. Am Nat 184:500–509. doi: 10.1086/677927 CrossRefPubMedGoogle Scholar
  47. Price SL, Powell S, Kronauer DJC, Tran LAP, Pierce NE, Wayne RK (2014) Renewed diversification is associated with new ecological opportunity in the Neotropical turtle ants. J Evol Biol 27:242–258. doi: 10.1111/jeb.12300 CrossRefPubMedGoogle Scholar
  48. Rasband WS (1997–2012) ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, Scholar
  49. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329. doi: 10.1111/j.2041-210X.2010.00044.x CrossRefGoogle Scholar
  50. Revell LJ (2012) phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x CrossRefGoogle Scholar
  51. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  52. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New YorkGoogle Scholar
  53. Stern DL (1994) A phylogenetic analysis of soldier evolution in the aphid family Hormaphididae. Proc R Soc B 256:203–209CrossRefPubMedGoogle Scholar
  54. Strassmann JE, Queller DC (2010) The social organism: congresses, parties, and committees. Evolution 64:605–616. doi: 10.1111/j.1558-5646.2009.00929.x
  55. Svensson E, Calsbeek R (eds) (2012) The adaptive landscape in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  56. Team RC (2015) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  57. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. PNAS 100:12808–12813CrossRefPubMedPubMedCentralGoogle Scholar
  58. Tschinkel WR (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insect Soc 45:385–410. doi: 10.1007/s000400050097 CrossRefGoogle Scholar
  59. Voje KL, Holen ØH, Liow LH, Stenseth NC (2015) The role of biotic forces in driving macroevolution: beyond the Red Queen. Proc R Soc B 282:20150186–20150186. doi: 10.1098/rspb.2015.0186 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wetterer JK (1994) Forager polymorphism, size-matching, and load delivery in the leaf-cutting ant, Atta cephalotes. Ecol Entomol 19:57–64. doi: 10.1111/j.1365-2311.1994.tb00390.x CrossRefGoogle Scholar
  61. Wheeler WM (1910) Ants: their structure, development and behavior. The Columbia University Press, New YorkGoogle Scholar
  62. Wilson EO (1980) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) II. The ergonomic optimization of leaf cutting. Behav Ecol Sociobiol 7:157–165. doi: 10.1007/BF00299521 CrossRefGoogle Scholar
  63. Wilson EO (1983a) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav Ecol Sociobiol 14:47–54. doi: 10.1007/BF00366655 CrossRefGoogle Scholar
  64. Wilson EO (1983b) Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) IV. Colony ontogeny of A. cephalotes. Behav Ecol Sociobiol 14:55–60. doi: 10.1007/BF00366656 CrossRefGoogle Scholar
  65. Wood LA, Tschinkel WR (1981) Quantification and modification of worker size variation in the fire ant Solenopsis invicta. Insect Soc 28:117–128. doi: 10.1007/bf02223700 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesGeorge Washington UniversityWashingtonUSA

Personalised recommendations