Advertisement

Behavioral Ecology and Sociobiology

, Volume 69, Issue 12, pp 1897–1906 | Cite as

Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

  • Jeremy Field
  • Gavin Shreeves
  • Martyn Kennedy
  • Selina Brace
  • James D. J. Gilbert
Original Article

Abstract

The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. Whilst the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort—for example where mothers transport heavy provisions to the nests. To test this hypothesis, we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to ten times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with the numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species.

Keywords

Sexual dimorphism Parental care Hymenoptera Wasps 

Notes

Acknowledgments

We thank Charlotte Stimmler, who performed some of the measurements, and T. Collett, E. Leadbeater, J. Green, E. Lucas, C. Bridge and the referees for comments on various versions of the manuscript. We also thank J.D. Asis, Y. Barbier, P. Gambino, A.W. Hook, V.L. Kazenas, R.P. Martins, A.S. Menke, M.F. O’Brien, A.M. O’Brien, F.D. Parker, J.A. Rosenheim, V.J. Tepedino and A.J.S. Weaving for kindly giving access to the specimens used in the study.

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Andersson M (1994) Sexual selection. Princeton University Press, PrincetonGoogle Scholar
  2. Baerends GP (1941) Fortpflanzungsverhalten und orientierung der grabwespe Ammophila campestris Jur. Tijdschr Entomol 84:68–275Google Scholar
  3. Berry JF, Shine R (1980) Sexual size dimorphism and sexual selection in turtles (order Testudines). Oecologia 44:185–191CrossRefGoogle Scholar
  4. Blanckenhorn WU (2005) Behavioral causes and consequences of sexual size dimorphism. Ethology 111:977–1016CrossRefGoogle Scholar
  5. Blanckenhorn WU, Dixon AFG, Fairbairn DJ, Foellmer MW, Gibert P, van der Linde K, Meier R, Nylin S, Pitnick S, Schoff C, Signorelli M, Teder T, Wiklund C (2007) Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am Nat 169:245–257CrossRefPubMedGoogle Scholar
  6. Blösch M (2000) Die Grabwespen Deutschlands. Goecke & Evers, KelternGoogle Scholar
  7. Bohart RM, Menke AS (1976) Sphecid wasps of the world: a generic revision. Univ California Press, BerkeleyGoogle Scholar
  8. Chippendale AK, Gibson JR, Rice WR (2001) Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc Natl Acad Sci U S A 98(4):1671–1675CrossRefGoogle Scholar
  9. Choe JC, Crespi BJ (eds) (1997) The evolution of social behaviour in insects and arachnids. Cambridge University Press, CambridgeGoogle Scholar
  10. Clutton-Brock TH, Harvey PH, Rudder B (1977) Sexual size dimorphism, socionomic sex ratio and body weight in primates. Nature 269:797–800CrossRefPubMedGoogle Scholar
  11. Coelho JR (1997) Sexual size dimorphism and flight behavior in cicada killers (Sphecius speciosus). Oikos 79:371–375CrossRefGoogle Scholar
  12. Costa JC (2006) The other insect societies. Belknap/Harvard, CambridgeGoogle Scholar
  13. Cox RM (2006) A test of the reproductive cost hypothesis for sexual size dimorphism in Yarrow’s spiny lizard Sceloporus jarrovii. J Anim Ecol 75(6):1361–1369CrossRefPubMedGoogle Scholar
  14. De Groot W (1974) Een in kevergaten nestelende Ammophila, A. clypeata (Hym., Sphecidae). Entomol Ber 34:24–28Google Scholar
  15. del Castillo RC, Fairbairn DJ (2012) Macroevolutionary patterns of bumblebee body size: detecting the interplay between natural and sexual selection. Ecol Evol 2(1):46–57PubMedCentralCrossRefPubMedGoogle Scholar
  16. Dollfuss H (2015) Revision of the wasp genus Ammophila KIRBY 1798 (Hymenoptera: Apoidea: Sphecidae) of the Sub-Saharan region of Africa. Linzer Biol Beiträge 47:307–412Google Scholar
  17. Edwards PB, Aschenborn HH (1989) Maternal care of a single offspring in the dung beetle Kheper nigroaeneus: the consequences of extreme parental investment. J Nat Hist 23(1):17–27CrossRefGoogle Scholar
  18. Evans HE (1959) Observations on the nesting behavior of digger wasps of the genus Ammophila. Am Midl Nat 62:449–473CrossRefGoogle Scholar
  19. Evans HE (1965) Simultaneous care of more than one nest by Ammophila azteca Cameron (Hymenoptera: Sphecidae). Psyche 72:8–23CrossRefGoogle Scholar
  20. Evans HE (1969) Phoretic copulation in the Hymenoptera. Entomol News 80:113–124Google Scholar
  21. Fairbairn DJ (1997) Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annu Rev Ecol Syst 28:659–687CrossRefGoogle Scholar
  22. Fairbairn DJ, Preziozi RF (1994) Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remigis. Am Nat 144:101–118CrossRefGoogle Scholar
  23. Fairbairn DJ, Blanckenhorn WU, Szekely T (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, New YorkCrossRefGoogle Scholar
  24. Favila ME (1993) Some ecological factors affecting the life-style of Canthon cyanellus cyanellus (Coleoptera Scarabaeidae): an experimental approach. Ethol Ecol Evol 5(3):319–328CrossRefGoogle Scholar
  25. Field J (1989) Intraspecific parasitism and nesting success in the solitary wasp Ammophila sabulosa. Behaviour 110:23–45CrossRefGoogle Scholar
  26. Field J (1992a) Patterns of nest provisioning and parental investment in the solitary digger wasp Ammophila sabulosa. Ecol Entomol 17:43–51CrossRefGoogle Scholar
  27. Field J (1992b) Prey utilization by the solitary digger wasp Ammophila sabulosa (Linnaeus) (Hymenoptera: Sphecidae). Entomol Gazette 43:131–138Google Scholar
  28. Field J (1993) Nesting biology of the solitary digger wasp Podalonia affinis (K.) (Hymenoptera: Sphecidae). Entomologist 112:17–24Google Scholar
  29. Field J, Turner E, Fayle T, Foster WA (2007) Costs of egg-laying and offspring provisioning: multifaceted parental investment in a digger wasp. Proc R Soc Lond B 274:445–451. doi: 10.1098/Rspb.2006.3745 CrossRefGoogle Scholar
  30. Field J, Ohl M, Kennedy M (2011) A molecular phylogeny for digger wasps in the tribe Ammophilini (Hymenoptera, Apoidea, Sphecidae. Syst Entomol 36:732–740. doi: 10.1111/J.1365-3113.2011.00591.X CrossRefGoogle Scholar
  31. Gaimari SD, Martins RP (1996) Nesting behavior and nest distributions of Ammophila gracilis Lepeletier (Hymenoptera: Sphecidae) in Brazil. J Hymenopt Res 5:240–248Google Scholar
  32. Gilbert JJ (1983) Sexual dimorphism in zooplankton (Copepoda, Cladocera, and Rotifera). Annu Rev Ecol Syst 14:1–33CrossRefGoogle Scholar
  33. Gilbert JDJ (2011) Insect dry weight: shortcut to a difficult quantity using museum specimens. Fla Entomol 94(4):964–970CrossRefGoogle Scholar
  34. Gilbert JDJ, Manica A (2015) The evolution of parental care in insects: a test of current hypotheses. Evolution 69(5):1255–1270PubMedCentralCrossRefPubMedGoogle Scholar
  35. Goubault M, Scott D, Hardy IC (2007) The importance of offspring value: maternal defence in parasitoid contests. Anim Behav 74(3):437–446CrossRefGoogle Scholar
  36. Halffter G (1997) Subsocial behavior in Scarabaeinae beetles. In: Choe J, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, CambridgeGoogle Scholar
  37. Han X, Fu J (2013) Does life history shape sexual size dimorphism in anurans? A comparative analysis. BMC Evol Biol 13(1):27PubMedCentralCrossRefPubMedGoogle Scholar
  38. Head G (1995) Selection on fecundity and variation in the degree of sexual size dimorphism among spider species (class Araneae). Evolution 49:776–781CrossRefGoogle Scholar
  39. Hedrick AV, Temeles EJ (1989) The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol Evol 4(5):136–138CrossRefPubMedGoogle Scholar
  40. Herrel A, Spithoven L, Van Damme R, De Vree F (1999) Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct Ecol 13(3):289–297CrossRefGoogle Scholar
  41. Hicks CH (1934) Biological notes on Sphex wrightii (Cresson). Psyche 41:150–157CrossRefGoogle Scholar
  42. Hinton HE (1981) Biology of insect eggs, vol 1. Pergamon, OxfordGoogle Scholar
  43. Hunt J, Simmons LW, Kotiaho JS (2002) A cost of maternal care in the dung beetle Onthophagus taurus? J Evol Biol 15(1):57–64CrossRefGoogle Scholar
  44. Hurlbutt B (1987) Sexual size dimorphism in parasitoid wasps. Biol J Linn Soc 30:63–89CrossRefGoogle Scholar
  45. Iglesias MS, Crespo FA, Valverde ADC (2012) Is parental care behavior in Belostoma species an evolutionary cause for their common sexual size dimorphism pattern? Entomol Sci 15(2):155–161CrossRefGoogle Scholar
  46. Kazenas VL (1971) The biology of the fossorial wasp Ammophila (Eremochares) dives Brullé (Hymenoptera, Sphecidae). Entomol Rev 49:172–180Google Scholar
  47. Krüger O (2005) The evolution of reversed sexual size dimorphism in hawks, falcons and owls: a comparative study. Evol Ecol 19(5):467–486CrossRefGoogle Scholar
  48. Kurczewski FE, Spofford MG (1998) Alternative nesting strategies in Ammophila urnaria (Hymenoptera: Sphecidae). J Nat Hist 32:99–106CrossRefGoogle Scholar
  49. Lande R (1980) Sexual dimorphism, sexual selection, and adaptation in polygenic characters. Evolution 34(2):292–305CrossRefGoogle Scholar
  50. Lighton JR, Weier JA, Feener DH Jr (1993) The energetics of locomotion and load carriage in the desert harvester ant Pogonomyrmex rugosus. J Exp Biol 181:49–61Google Scholar
  51. Lindenfors P, Tullberg BS, Biuw M (2002) Phylogenetic analyses of sexual selection and sexual size dimorphism in pinnipeds. Behav Ecol Sociobiol 52:188–193CrossRefGoogle Scholar
  52. Lomholdt O (1984) The Sphecidae (Hymenoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica vol 4, 2nd edn. Scandinavian Science Press, DenmarkGoogle Scholar
  53. Marden JH (1987) Maximum lift production during takeoff in flying animals. J Exp Biol 130:235–258Google Scholar
  54. Monteith GB, Storey RI (1981) The biology of Cephalodesmius, a genus of dung beetles which synthesizes “dung” from plant material (Coleoptera: Scarabaeidae: Scarabaeinae). Mem Qld Mus 20(2):253–277Google Scholar
  55. Myers P (1978) Sexual dimorphism in size of vespertilionid bats. Am Nat 112(986):701–711CrossRefGoogle Scholar
  56. Nylin S, Wedell N (1994) Sexual size dimorphism and comparative methods. In: Eggleton P, Vane-Wright RI (eds) Phylogenetics and ecology. Academic, LondonGoogle Scholar
  57. O’Neill KM (1985) Egg size, prey size and sexual size dimorphism in digger wasps (Hymenoptera: Sphecidae). Can J Zool 63:2187–2193CrossRefGoogle Scholar
  58. O’Neill KM (2001) Solitary wasps. Cornell University Press, IthacaGoogle Scholar
  59. O’Brien MF, O’Brien AM (1988) Biology of Ammophila evansi and A. mediata in Northern Michigan (Hymenoptera: Sphecidae). Pan-Pac Entomol 64:73–79Google Scholar
  60. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2012) Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5. url: http://CRAN.R-project.org/package=caper
  61. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefPubMedGoogle Scholar
  62. Parker FD, Tepedino VJ, Vincent DL (1980) Observations on the provisioning behavior of Ammophila aberti Haldeman (Hymenoptera: Sphecidae. Psyche 87:249–258CrossRefGoogle Scholar
  63. Pavey CR (2008) Evolution of prey holding behaviour and large male body size in Ninox owls (Strigidae). Biol J Linn Soc 95(2):284–292CrossRefGoogle Scholar
  64. Petersson E (1995) Male load-lifting capacity and mating success in the swarming caddis fly Athripsodes cinereus. Physiol Entomol 20:66–70CrossRefGoogle Scholar
  65. Powell JA (1964) Additions to the knowledge of the nesting behavior of North American Ammophila (Hymenoptera: Sphecidae). J Kansas Entomol Soc 37:240–258Google Scholar
  66. Preziosi RF, Fairbairn DJ (2000) Lifetime selection on adult body size and components of body size in a waterstrider: opposing selection and maintenance of sexual size dimorphism. Evolution 54(2):558–566CrossRefPubMedGoogle Scholar
  67. Ralls K (1976) Mammals in which females are larger than males. Q Rev Biol 51:245–276CrossRefPubMedGoogle Scholar
  68. Ranta E, Laurila A, Elmberg J (1994) Reinventing the wheel—analysis of sexual dimorphism in body size. Oikos 70:313–321CrossRefGoogle Scholar
  69. Reimchen TE, Nosil P (2004) Variable predation regimes predict the evolution of sexual dimorphism in a population of threespine stickleback. Evolution 58(6):1274–1281CrossRefPubMedGoogle Scholar
  70. Rosenheim JA (1987) Nesting-behavior and bionomics of a solitary ground-nesting wasp, Ammophila dysmica (Hymenoptera, Sphecidae)—influence of parasite pressure. Ann Entomol Soc Am 80:739–749CrossRefGoogle Scholar
  71. Rosenheim JA (1989) Behaviorally mediated spatial and temporal refuges from a cleptoparasite, Argochrysis armilla (Hymenoptera, Chrysididae), attacking a ground-nesting wasp, Ammophila dysmica (Hymenoptera, Sphecidae). Behav Ecol Sociobiol 25:335–348CrossRefGoogle Scholar
  72. Shine R (1989) Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Q Rev Biol 64(4):419–461CrossRefPubMedGoogle Scholar
  73. Shreeves G, Field J (2008) Parental care and sexual size dimorphism in wasps and bees. Behav Ecol Sociobiol 62:843–852CrossRefGoogle Scholar
  74. Stearns SC (1977) The evolution of life-history traits: a critique of the theory and a review of the data. Annu Rev Ecol Evol Syst 8:145–171CrossRefGoogle Scholar
  75. Stephens PR, Wiens JJ (2009) Evolution of sexual size dimorphisms in emydid turtles: ecological dimorphism, Rensch’s rule, and sympatric divergence. Evolution 63(4):910–925CrossRefPubMedGoogle Scholar
  76. Stillwell RC, Blanckenhorn WU, Teder T, Davidowitz G, Fox CW (2010) Sex differences in phenotypic plasticity affect variation in sexual size dimorphism in insects: from physiology to evolution. Annu Rev Entomol 55:227–245CrossRefPubMedGoogle Scholar
  77. Temeles EJ, Pan IL, Brennan JL, Horwitt JN (2000) Evidence for ecological causation of sexual dimorphism in a hummingbird. Science 289(5478):441–443CrossRefPubMedGoogle Scholar
  78. Tormos J, Asis JD, Gayubo SF (1995) Observations on the nesting behaviour of Ammophila laevicollis Andre (Hymenoptera, Sphecidae). Ann Soc Entomol Fr 31:157–163Google Scholar
  79. Tornberg R, Mönkkönen M, Pahkala M (1999) Changes in diet and morphology of Finnish goshawks from 1960s to 1990s. Oecologia 121(3):369–376CrossRefGoogle Scholar
  80. Trumbo ST (2012) Patterns of parental care in invertebrates. In: Royle NJ, Smiseth PT, Kölliker M (eds) The evolution of parental care. Oxford University Press, Oxford, pp 81–100CrossRefGoogle Scholar
  81. Weaving AJS (1988) Prey selection in several sympatric species of Ammophila W. Kirby (Hymenoptera: Sphecidae) in southern Africa. Ann Cape Prov Mus (Nat Hist) 16:327–349Google Scholar
  82. Weaving AJS (1989a) Nesting strategies in some southern African species of Ammophila (Hymenoptera: Sphecidae). J Nat Hist 23:1–16CrossRefGoogle Scholar
  83. Weaving AJS (1989b) Habitat selection and nest construction behavior in some Afro-tropical species of Ammophila (Hymenoptera, Sphecidae). J Nat Hist 23:847–871. doi: 10.1080/00222938900770451 CrossRefGoogle Scholar
  84. Weimerskirch H, Le Corre M, Ropert-Coudert Y, Kato A, Marsac F (2006) Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby. Oecologia 146(4):681–691CrossRefPubMedGoogle Scholar
  85. Wheeler P, Greenwood PJ (1983) The evolution of reversed sexual dimorphism in birds of prey. Oikos 40(1):145–149CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jeremy Field
    • 1
  • Gavin Shreeves
    • 2
  • Martyn Kennedy
    • 3
  • Selina Brace
    • 4
  • James D. J. Gilbert
    • 1
    • 5
  1. 1.School of Life SciencesUniversity of SussexBrightonUK
  2. 2.Department of Medical OncologyMount Vernon HospitalMiddlesexUK
  3. 3.Allan Wilson Centre, Department of ZoologyUniversity of OtagoDunedinNew Zealand
  4. 4.Department of Earth SciencesNatural History MuseumLondonUK
  5. 5.Department of Biological, Biomedical and Environmental ScienceUniversity of HullHullUK

Personalised recommendations