Behavioral Ecology and Sociobiology

, Volume 69, Issue 8, pp 1265–1274 | Cite as

Latitudinal variation in behaviors linked to risk tolerance is driven by nest-site competition and spatial distribution in the ant Temnothorax rugatulus

  • S. E. BengstonEmail author
  • A. Dornhaus
Original Paper


Geographic range has long been noted to be associated with many organismic and ecological traits such as body size and species richness. However, much less is known about whether and how ecological variation across latitudinal gradients reflects behavioral variation. Ant colonies may also show behavioral variation, and Temnothorax rugatulus show a colony-level behavioral syndrome that seems to reflect risk tolerance across their North American range. While it is presumed that this pattern is the result of adaptation to local environmental conditions, which ecological factors are driving this variation are unknown. Here, we test if colony risk tolerance is affected by competition, predation, resource availability, or environmental stress at each site. Our results show that increased competition, specifically for nest sites, as well as increased spatial clustering of colonies predicts higher risk tolerance. Additionally, the spatial clustering of colonies influences the structure of the risk-taking syndrome, i.e., which colony-level behaviors are correlated and how strongly. This emphasizes the need for understanding large-scale geographic variation in behavior, as it may explain how ecological factors drive the evolution and maintenance of intraspecific behavioral variation across populations.


Aggression Foraging behavior Environmental effects Local adaptation Behavioral syndrome Social insects 



We would like to thank the Dornhaus lab, Stephen Pratt and two anonymous reviewers for helpful feedback on the manuscript, Daniel Charbonneau for advice and feedback on the data analysis, Min Shin and Hoan Nguyen for their development of the optic flow algorithm, as well as NSF (grants no. IOS-1045239 and DBI-1262292 to AD).

Supplementary material

265_2015_1939_MOESM1_ESM.jpg (61 kb)
Supplemental Figure 1 All of the models tested in the stepwise model selection process and the associated AIC value of each model. The final model selected resulted in the percentage of nest sites occupied and the clustering index as the predictive variables with an AIC score of -146.9. (JPEG 60 kb)


  1. Anderson CA (2001) Heat and violence. Curr Dir Psychol Sci 10:33–38. doi: 10.1111/1467-8721.00109 CrossRefGoogle Scholar
  2. Anderson DR, Burnham KP (2002) Avoiding pitfalls when using information-theoretic methods. J Wildl Manag 66:912–918. doi: 10.2307/3803155 CrossRefGoogle Scholar
  3. Angilletta MJ Jr, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240. doi: 10.1016/S0169-5347(03)00087-9 CrossRefGoogle Scholar
  4. Ashton KG (2004) Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr Comp Biol 44:403–412. doi: 10.1093/icb/44.6.403 CrossRefPubMedGoogle Scholar
  5. Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163CrossRefPubMedGoogle Scholar
  6. Bell AM, Stamps JA (2004) Development of behavioural differences between individuals and populations of sticklebacks, Gasterosteus aculeatus. Anim Behav 68:1339–1348. doi: 10.1016/j.anbehav.2004.05.007 CrossRefGoogle Scholar
  7. Bengston SE, Dornhaus A (2013) Colony size does not predict foraging distance in the ant Temnothorax rugatulus: a puzzle for standard scaling models. Insect Soc 60:93–96. doi: 10.1007/s00040-012-0272-4 CrossRefGoogle Scholar
  8. Bengston SE, Dornhaus A (2014) Be meek or be bold? A colony-level behavioural syndrome in ants. Proc R Soc B Biol Sci 281:20140518. doi: 10.1098/rspb.2014.0518 CrossRefGoogle Scholar
  9. Bengston SE, Jandt JM (2014) The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Behav Evol Ecol 2:81. doi: 10.3389/fevo.2014.00081 Google Scholar
  10. Bengston SE, Pruitt JN, Riechert SE (2014) Differences in environmental enrichment generate contrasting behavioural syndromes in a basal spider lineage. Anim Behav 93:105–110. doi: 10.1016/j.anbehav.2014.04.022 CrossRefGoogle Scholar
  11. Biro PA, Stamps JA (2008) Are animal personality traits linked to life-history productivity? Trends Ecol Evol 23:361–368. doi: 10.1016/j.tree.2008.04.003 CrossRefPubMedGoogle Scholar
  12. Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk–taking behaviour in domestic trout populations. Proc R Soc Lond B Biol Sci 271:2233–2237. doi: 10.1098/rspb.2004.2861 CrossRefGoogle Scholar
  13. Blanckenhorn WU, Fairbairn DJ (1995) Life history adaptation along a latitudinal cline in the water strider Aquarius remigis (Heteroptera: Gerridae). J Evol Biol 8:21–41. doi: 10.1046/j.1420-9101.1995.8010021.x CrossRefGoogle Scholar
  14. Blumstein DT (2006) Developing an evolutionary ecology of fear: how life history and natural history traits affect disturbance tolerance in birds. Anim Behav 71:389–399. doi: 10.1016/j.anbehav.2005.05.010 CrossRefGoogle Scholar
  15. Bryant MJ, Grant JWA (1995) Resource defence, monopolization and variation of fitness in groups of female Japanese medaka depend on the synchrony of food arrival. Anim Behav 49:1469–1479. doi: 10.1016/0003-3472(95)90068-3 CrossRefGoogle Scholar
  16. Burnham KP, Anderson DR, Huyvaert KP (2010) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65:23–35. doi: 10.1007/s00265-010-1029-6 CrossRefGoogle Scholar
  17. Cao TT, Dornhaus A (2012) Ants use pheromone markings in emigrations to move closer to food-rich areas. Insect Soc 59:87–92. doi: 10.1007/s00040-011-0192-8 CrossRefGoogle Scholar
  18. Chapuisat M, Goudet J, Keller L (1997) Microsatellites reveal high population viscosity and limited dispersal in the ant formica paralugubris. Evolution 51:475–482. doi: 10.2307/2411120 CrossRefGoogle Scholar
  19. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453. doi: 10.2307/1931034 CrossRefGoogle Scholar
  20. Conover DO (1992) Seasonality and the scheduling of life history at different latitudes. J Fish Biol 41:161–178. doi: 10.1111/j.1095-8649.1992.tb03876.x CrossRefGoogle Scholar
  21. Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252. doi: 10.1016/S0169-5347(00)89081-3 CrossRefPubMedGoogle Scholar
  22. Costa R, Peixoto AA, Barbujani G, Kyriacou CP (1992) A latitudinal cline in a drosophila clock gene. Proc R Soc Lond B Biol Sci 250:43–49. doi: 10.1098/rspb.1992.0128 CrossRefGoogle Scholar
  23. Cousyn C, Meester LD, Colbourne JK et al (2001) Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc Natl Acad Sci 98:6256–6260. doi: 10.1073/pnas.111606798 PubMedCentralCrossRefPubMedGoogle Scholar
  24. Croy MI, Hughes RN (1991) Effects of food supply, hunger, danger and competition on choice of foraging location by the fifteen-spined stickleback, Spinachia spinachia L. Anim Behav 42:131–139. doi: 10.1016/S0003-3472(05)80613-X CrossRefGoogle Scholar
  25. Derksen S, Keselman HJ (1992) Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br J Math Stat Psychol 45:265–282. doi: 10.1111/j.2044-8317.1992.tb00992.x CrossRefGoogle Scholar
  26. Dingemanse NJ, Kazem AJN, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81–89. doi: 10.1016/j.tree.2009.07.013 CrossRefPubMedGoogle Scholar
  27. Dornhaus A, Chittka L (2004) Why do honey bees dance? Behav Ecol Sociobiol 55:395–401. doi: 10.1007/s00265-003-0726-9 CrossRefGoogle Scholar
  28. Dornhaus A, Holley J-A, Pook VG et al (2008) Why do not all workers work? Colony size and workload during emigrations in the ant Temnothorax albipennis. Behav Ecol Sociobiol 63:43–51. doi: 10.1007/s00265-008-0634-0 CrossRefGoogle Scholar
  29. Dornhaus A, Holley J-A, Franks NR (2009) Larger colonies do not have more specialized workers in the ant Temnothorax albipennis. Behav Ecol. doi: 10.1093/beheco/arp070 Google Scholar
  30. Fisher J (1954) Evolution and bird sociality. Evol Process 71–83Google Scholar
  31. Fisher BL (1999) Improving inventory efficiency: a case study of leaf-litter ant diversity of Madagascar. Ecol Appl 9:714–731. doi: 10.1890/1051-0761(1999)009[0714:IIEACS]2.0.CO;2 CrossRefGoogle Scholar
  32. Foitzik S, Heinze J (1998) Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav Ecol 9:367–375. doi: 10.1093/beheco/9.4.367 CrossRefGoogle Scholar
  33. Goldberg JL, Grant JWA, Lefebvre L (2001) Effects of the temporal predictability and spatial clumping of food on the intensity of competitive aggression in the Zenaida dove. Behav Ecol 12:490–495. doi: 10.1093/beheco/12.4.490 CrossRefGoogle Scholar
  34. Gordon DM (2013) The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498:91–93. doi: 10.1038/nature12137 CrossRefPubMedGoogle Scholar
  35. Grand TC, Dill LM (1999) The effect of group size on the foraging behaviour of juvenile coho salmon: reduction of predation risk or increased competition? Anim Behav 58:443–451. doi: 10.1006/anbe.1999.1174 CrossRefPubMedGoogle Scholar
  36. Grant JWA, Guha RT (1993) Spatial clumping of food increases its monopolization and defense by convict cichlids, Cichlasoma nigrofasciatum. Behav Ecol 4:293–296. doi: 10.1093/beheco/4.4.293 CrossRefGoogle Scholar
  37. Guttman L (1954) Some necessary conditions for common-factor analysis. Psychometrika 19:149–161. doi: 10.1007/BF02289162 CrossRefGoogle Scholar
  38. Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212. doi: 10.1007/s004420050509 CrossRefGoogle Scholar
  39. Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol Entomol 15:23–35. doi: 10.1111/j.1365-3032.1990.tb00489.x CrossRefGoogle Scholar
  40. Inger R, Bearhop S, Robinson JA, Ruxton G (2006) Prey choice affects the trade-off balance between predation and starvation in an avian herbivore. Anim Behav 71:1335–1341. doi: 10.1016/j.anbehav.2005.08.015 CrossRefGoogle Scholar
  41. Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214. doi: 10.2307/1939574 CrossRefGoogle Scholar
  42. Jandt JM, Bengston S, Pinter-Wollman N et al (2014) Behavioural syndromes and social insects: personality at multiple levels. Biol Rev 89:48–67. doi: 10.1111/brv.12042 CrossRefPubMedGoogle Scholar
  43. Jongepier E, Kleeberg I, Job S, Foitzik S (2014) Collective defence portfolios of ant hosts shift with social parasite pressure. Proc R Soc B Biol Sci 281:20140225. doi: 10.1098/rspb.2014.0225 CrossRefGoogle Scholar
  44. Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632CrossRefGoogle Scholar
  45. Kaspari M, Ward PS, Yuan M (2004) Energy gradients and the geographic distribution of local ant diversity. Oecologia 140:407–413. doi: 10.1007/s00442-004-1607-2 CrossRefPubMedGoogle Scholar
  46. Kelley OJ, Hunter AS, Haise HR, Hobbs CH (1946) Comparison of methods of measuring soil moisture under field conditionsGoogle Scholar
  47. Lima SL (1998) Stress and decision-making under the risk of predation: recent developments from behavioral, reproductive, and ecological perspectives. Advances in the study of behavior: stress and behavior. Academic PressGoogle Scholar
  48. McGlone J, Stansbury W, Tribble L (1987) Effects of heat and social stressors and within-pen weight variation on young pig performance and agonistic behavior. J Anim Sci 65:456–462PubMedGoogle Scholar
  49. Modlmeier AP, Foitzik S (2011) Productivity increases with variation in aggression among group members in Temnothorax ants. Behav Ecol 22:1026–1032. doi: 10.1093/beheco/arr086 CrossRefGoogle Scholar
  50. Mundry R (2010) Issues in information theory-based statistical inference—a commentary from a frequentist’s perspective. Behav Ecol Sociobiol 65:57–68. doi: 10.1007/s00265-010-1040-y CrossRefGoogle Scholar
  51. Pamminger T, Modlmeier AP, Suette S et al (2012) Raiders from the sky: slavemaker founding queens select for aggressive host colonies. Biol Lett. doi: 10.1098/rsbl.2012.0499 PubMedCentralPubMedGoogle Scholar
  52. Partridge LW, Partridge KA, Franks NR (1997) Field survey of a monogynous leptothoracine ant (Hymenoptera, Formicidae) evidence of seasonal polydomy ? Insect Soc 44:75–83. doi: 10.1007/s000400050031 CrossRefGoogle Scholar
  53. Pinter-Wollman N, Gordon DM, Holmes S (2012) Nest site and weather affect the personality of harvester ant colonies. Behav Ecol. doi: 10.1093/beheco/ars066 PubMedCentralPubMedGoogle Scholar
  54. Relyea RA (2001) Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82:523–540. doi: 10.1890/0012-9658(2001)082[0523:MABPOL]2.0.CO;2 CrossRefGoogle Scholar
  55. Riechert SE, Jones TC (2008) Phenotypic variation in the social behaviour of the spider Anelosimus studiosus along a latitudinal gradient. Anim Behav 75:1893–1902. doi: 10.1016/j.anbehav.2007.10.033 CrossRefGoogle Scholar
  56. Rueppell O, Kirkman RW (2005) Extraordinary starvation resistance in Temnothorax rugatulus (Hymenoptera, Formicidae) colonies: demography and adaptive behavior. Insect Soc 52:282–290. doi: 10.1007/s00040-005-0804-2 CrossRefGoogle Scholar
  57. Rüppell O, Heinze J, Hölldobler B (1998) Size-dimorphism in the queens of the North American ant Leptothorax rugatulus (Emery). Insect Soc 45:67–77. doi: 10.1007/s000400050069 CrossRefGoogle Scholar
  58. Rüppell O, Strätz M, Baier B, Heinze J (2003) Mitochondrial markers in the ant Leptothorax rugatulus reveal the population genetic consequences of female philopatry at different hierarchical levels. Mol Ecol 12:795–801. doi: 10.1046/j.1365-294X.2003.01769.x CrossRefPubMedGoogle Scholar
  59. Sasaki T, Pratt SC (2013) Ants learn to rely on more informative attributes during decision-making. Biol Lett 9:20130667. doi: 10.1098/rsbl.2013.0667 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Sawyer LA, Sandrelli F, Pasetto C et al (2006) The period gene thr-Gly polymorphism in Australian and African drosophila melanogaster populations: implications for selection. Genetics 174:465–480. doi: 10.1534/genetics.106.058792 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annu Rev Ecol Syst 24:35–68CrossRefGoogle Scholar
  62. Schumacher B (2002) Methods for the determination of total organic carbon (TOC) in soils and sedimentsGoogle Scholar
  63. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. doi: 10.1016/j.tree.2004.04.009 CrossRefPubMedGoogle Scholar
  64. Stachowicz JJ, Hay ME (2000) Geographic variation in camouflage specialization by a decorator crab. Am Nat 156:59–71. doi: 10.1086/an.2000.156.issue-1 CrossRefPubMedGoogle Scholar
  65. Tran MV, O’Grady M, Colborn J et al (2014) Aggression and food resource competition between sympatric hermit crab species. PLoS ONE 9:e91823. doi: 10.1371/journal.pone.0091823 PubMedCentralCrossRefPubMedGoogle Scholar
  66. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Ecology & Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations