Behavioral Ecology and Sociobiology

, Volume 69, Issue 6, pp 909–914 | Cite as

Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds

  • Heiko Schmaljohann
  • Steffen Kämpfer
  • Anna Fritzsch
  • Raoul Kima
  • Cas Eikenaar
Original Paper


In nocturnal songbird migrants, total speed of migration is determined by the time birds stay at stopovers, where they replenish fuel reserves used during previous flights, and by their travel speed. In contrast to factors influencing stopover duration, little is known about individual variation in travel speed which is a combination of birds’ ground speed and the time spent flying. The latter is directly affected by nocturnal departure time. Ground speed can be easily tracked, e.g., by radar, but not much is known about when migrants set off within the night, let alone factors influencing its variation. Studying how factors cause variation in nocturnal departure time requires an experimental setup that allows transferring results from indoor experiments, where environmental conditions can be controlled for or manipulated, to the behavior of free-flying birds. Here, we show that the start of nocturnal migratory restlessness „Zugunruhe” of caged songbirds was significantly positively related to their radio-tracked nocturnal departure time the following night. We can now start identifying factors causing individual variation in the start of nocturnal migratory restlessness and transfer these results to departure times within the night. This will improve our understanding of why travel speed, and with that total speed of migration, varies individually and how it is affected by environmental changes.


Migratory restlessness Nocturnal departure time Radio-tracking Songbird Speed of migration Zugunruhe 



The authors thank Konstantin Lebus for the help with the radio-tracking. Jochen Dierschke and Klaus Müller supported in various ways on Helgoland. Franz Bairlein and an anonymous referee provided useful comments. HS and the study are financed by the Deutsche Forschungsgemeinschaft (grant number SCHM 2647).

Ethical standards

Northern wheatears were caught, ringed, and radio-tagged under license of the Ministry for Agriculture, the Environment and Rural Areas, Schleswig-Holstein, Germany.

Author contributions

HS designed the research; HS, SK, AF, and RK performed the research; HS and SK analyzed the data; HS, SK, AF, RK, and CE wrote the paper.

Conflicts of interest

The authors have no competing interests to declare.

Supplementary material

265_2015_1902_MOESM1_ESM.pdf (67 kb)
ESM 1 (PDF 67 kb)
265_2015_1902_MOESM2_ESM.pdf (62 kb)
ESM 2 (PDF 61 kb)
265_2015_1902_MOESM3_ESM.pdf (46 kb)
ESM 3 (PDF 46 kb)


  1. Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152:5–23CrossRefGoogle Scholar
  2. Berthold P, Fiedler W, Querner U (2000) Die Zugunruhe bei Vögeln - eine Darstellung nach Videoaufnahmen bei Infrarotlichtbeleuchtung. J Ornithol 141:285–299CrossRefGoogle Scholar
  3. Berthold P, Gwinner E, Klein H (1972) Circannuale Periodik bei Grasmücken. I. Periodik des Körpergewichtes, der Mauser und der Nachtunruhe bei Sylvia atricapilla und S. borin unter verschiedenen konstanten Bedingungen. J Ornithol 113:186–189Google Scholar
  4. Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212:77–79CrossRefPubMedGoogle Scholar
  5. Bruderer B (1997) The study of bird migration by radar. Part 2: major achievements. Naturwissenschaften 84:45–54CrossRefGoogle Scholar
  6. Bruderer B, Boldt A (2001) Flight characteristics of birds: I. radar measurements of speeds. Ibis 143:178–204CrossRefGoogle Scholar
  7. Cochran WW (1980) Wildlife telemetry. In: Schemnitz S (ed) Wildlife management techniques manual, 4th edn. The Wildlife Society, Washington, pp 507–520Google Scholar
  8. Crawley MJ (2005) Statistical computing. An introduction to data analysis using S-Plus. Wiley, West SussexGoogle Scholar
  9. Delingat J, Hobson K, Dierschke V, Schmaljohann H, Bairlein F (2011) Population differentiation of Northern wheatears by means of morphometric data and stable isotopes. J Ornithol 152:383–395CrossRefGoogle Scholar
  10. Dorka V (1966) Das jahres- und tageszeitliche Zugmuster von Kurz- und Langstreckenziehern nach Beobachtungen auf den Alpenpässen Cou/Bretolet (Wallis). Ornithol Beob 63:165–223Google Scholar
  11. Eikenaar C, Schläfke L (2013) Size and accumulation of fuel reserves at stopover predict nocturnal restlessness in a migratory bird. Biol Lett 9:20130712CrossRefPubMedCentralPubMedGoogle Scholar
  12. Eikenaar C, Klinner T, Szostek KL, Bairlein F (2014) Migratory restlessness in captive individuals predicts actual departure in the wild. Biol Lett 10:20140154CrossRefPubMedCentralPubMedGoogle Scholar
  13. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  14. Jenni L, Schaub M (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 155–171CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  16. Kemp MU, Shamoun-Baranes J, van Loon EE, McLaren JD, Dokter AM, Bouten W (2012a) Quantifying flow-assistance and implications for movement research. J Theor Biol 308:56–67CrossRefPubMedGoogle Scholar
  17. Kemp MU, van Loon E, Shamoun-Baranes J, Bouten W (2012b) RNCEP: global weather and climate data at your fingertips. Method Ecol Evol 3:65–70CrossRefGoogle Scholar
  18. Kenward RE (2001) A manual for wildlife radio tagging. Academic, London, San DiegoGoogle Scholar
  19. Liechti F (2006) Birds: blowin' by the wind? J Ornithol 147:202–211CrossRefGoogle Scholar
  20. Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of Northern Wheatear Oenanthe oenanthe. J Biol Rhythm 25:268–276CrossRefGoogle Scholar
  21. Maggini I, Bairlein F (2012) Innate sex differences in the timing of spring migration in a songbird. PLoS ONE 7:e31271CrossRefPubMedCentralPubMedGoogle Scholar
  22. Matteson DS, James NA (2014) A nonparametric approach for multiple change point analysis of multivariate data. J Am Stat Assoc 109:334–345CrossRefGoogle Scholar
  23. Muheim R, Phillips JB, Åkesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839CrossRefPubMedGoogle Scholar
  24. Nilsson C, Klaassen RHG, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845CrossRefPubMedGoogle Scholar
  25. Pakhomov A, Chernetsov N (2014) Early evening activity of migratory garden warbler Sylvia borin: compass calibration activity? J Ornithol 155:621–630CrossRefGoogle Scholar
  26. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL
  27. Schmaljohann H, Becker PJJ, Karaardic H, Liechti F, Naef-Daenzer B, Grande C (2011) Nocturnal exploratory flights, departure time, and direction in a migratory songbird. J Ornithol 152:439–452CrossRefGoogle Scholar
  28. Schmaljohann H, Korner-Nievergelt F, Naef-Daenzer B, Nagel R, Maggini I, Bulte M, Bairlein F (2013) Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe). Front Zool 10Google Scholar
  29. Schmaljohann H, Liechti F, Bruderer B (2009) Trans-Sahara migrants select flight altitudes to minimize energy costs rather than water loss. Behav Ecol Sociobiol 63:1609–1619CrossRefGoogle Scholar
  30. Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate shift in migratory direction and timing of nocturnal departure in a free flying songbird. J Anim Ecol 80:1115–1122CrossRefPubMedGoogle Scholar
  31. Smolinsky JA, Diehl RH, Radzio TA, Delaney DK, Moore FR (2013) Factors influencing the movement biology of migrant songbirds confronted with an ecological barrier. Behav Ecol Sociobiol 67:2041–2051CrossRefGoogle Scholar
  32. Svensson L (1992) Identification guide to European passerines, 4th edn. BTO, StockholmGoogle Scholar
  33. Székely GJ, Rizzo ML (2005) Hierarchical clustering via joint between-within distances: extending Ward's minimum variance method. J Classif 22:151–183CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Heiko Schmaljohann
    • 1
  • Steffen Kämpfer
    • 1
  • Anna Fritzsch
    • 1
  • Raoul Kima
    • 1
  • Cas Eikenaar
    • 1
  1. 1.Vogelwarte HelgolandInstitute of Avian ResearchWilhelmshavenGermany

Personalised recommendations