Pathogen-associated self-medication behavior in the honeybee Apis mellifera
- 1.5k Downloads
- 54 Citations
Abstract
Honeybees, Apis mellifera, have several prophylactic disease defense strategies, including the foraging of antibiotic, antifungal, and antiviral compounds of plant products. Hence, honey and pollen contain many compounds that prevent fungal and bacterial growth and inhibit viral replication. Since these compounds are also fed to the larvae by nurse bees, they play a central role for colony health inside the hive. Here, we show that honeybee nurse bees, infected with the microsporidian gut parasite Nosema ceranae, show different preferences for various types of honeys in a simultaneous choice test. Infected workers preferred honeys with a higher antibiotic activity that reduced the microsporidian infection after the consumption of the honey. Since nurse bees feed not only the larvae but also other colony members, this behavior might be a highly adaptive form of therapeutic medication at both the individual and the colony level.
Keywords
Honeybee Honey Antimicrobial activity Therapeutic self-medication Nosema ceranae Social immunityNotes
Acknowledgments
We would like to thank Victoriţa Bonta for the help with determining antibiotic contaminants and the two reviewers for most helpful comments. Financial support was granted by the project RoBeeTech (grant POS CCE 206/20.07.2010 SMIS code 618/12460 to L.A. Mărghitaş, D.S. Dezmirean, and R.F.A. Moritz) and an ERASMUS MUNDUS exchange program grant (A.D.). The authors declare that they have no conflict of interest.
Supplementary material
References
- Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MN, Manley-Harris M, Snow MJ (2008) Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 343:651–659. doi: 10.1016/j.carres.2007.12.011 PubMedCrossRefGoogle Scholar
- Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565. doi: 10.1098/rsbl.2009.0986 PubMedCrossRefPubMedCentralGoogle Scholar
- Altaye SZ, Pirk CW, Crewe RM, Nicolson SW (2010) Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J Exp Biol 213:3311–3318. doi: 10.1242/jeb.046953 PubMedCrossRefGoogle Scholar
- Beetsma J (1979) The process of queen-worker differentiation in the honeybee. Bee World 60:24–39Google Scholar
- Blum MS, Novak AF, Taber S 3rd (1959) 10-Hydroxy-delta 2-decenoic acid, an antibiotic found in royal jelly. Science 130:452–453. doi: 10.1126/science.130.3373.452 PubMedCrossRefGoogle Scholar
- Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:61–76. doi: 10.1007/BF00172140 CrossRefGoogle Scholar
- Camazine S, Sneyd J, Jenkins MJ, Murray JD (1990) A mathematical model of self-organized pattern formation on the combs of honeybee colonies. J Theor Biol 147:553–571. doi: 10.1016/S0022-5193(05)80264-4 CrossRefGoogle Scholar
- Carson MC (1993) Simultaneous determination of multiple tetracycline residues in milk using metal chelate affinity chromatography. J AOAC Int 76:329–34PubMedGoogle Scholar
- Castella G, Chapuisat M, Moret Y, Christe P (2008) The presence of conifer resin decreases the use of the immune system in wood ants. Ecol Entomol 33:408–412. doi: 10.1111/j.1365-2311.2007.00983.x CrossRefGoogle Scholar
- Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc B 274:2013–2017. doi: 10.1098/rspb.2007.0531
- Christe P, Oppliger A, Bancalà F, Castella G, Chapuisat M (2003) Evidence for collective medication in ants. Ecol Lett 6:19–22. doi: 10.1046/j.1461-0248.2003.00395.x CrossRefGoogle Scholar
- Clayton DH, Wolfe ND (1993) The adaptive significance of self-medication. Trends Ecol Evol 8:60–63. doi: 10.1016/0169-5347(93)90160-Q PubMedCrossRefGoogle Scholar
- Crailsheim K (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie 29:97–112. doi: 10.1051/apido:19980106 CrossRefGoogle Scholar
- de Roode JC, Lefèvre T (2012) Behavioral immunity in insects. Insects 3:789–820. doi: 10.3390/insects3030789 CrossRefGoogle Scholar
- Dezmirean GI, Mărghitaş LA, Bobiş O, Dezmirean DS, Bonta V, Erler S (2012) Botanical origin causes changes in nutritional profile and antioxidant activity of fermented products obtained from honey. J Agric Food Chem 60:8028–8035. doi: 10.1021/jf3022282 PubMedCrossRefGoogle Scholar
- Dustmann JH (1979) Antibacterial effect of honey. Apiacta 1:1–4Google Scholar
- Efem SE, Udoh KT, Iwara CI (1992) The antimicrobial spectrum of honey and its clinical significance. Infection 20:227–229. doi: 10.1007/BF02033065 PubMedCrossRefGoogle Scholar
- Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620. doi: 10.1016/j.tim.2011.09.003 PubMedCrossRefGoogle Scholar
- Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x PubMedCrossRefPubMedCentralGoogle Scholar
- Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365. doi: 10.1016/S0932-4739(96)80059-9
- Fouks B, Lattorff HMG (2011) Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS One 6:e26328. doi: 10.1371/journal.pone.0026328 PubMedCrossRefPubMedCentralGoogle Scholar
- Frost EH, Shutler D, Hillier NK (2012) The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats. Naturwissenschaften 99:677–686. doi: 10.1007/s00114-012-0955-8 PubMedCrossRefGoogle Scholar
- Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) A potent antibacterial protein in royal jelly. purification and determination of the primary structure of royalisin. J Biol Chem 265:11333–11337PubMedGoogle Scholar
- Galizia G, Eisenhardt D, Giurfa M (2011) Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Springer, BerlinGoogle Scholar
- Gilliam M, Taber S, Lorenz BJ, Prest DB (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J Invertebr Pathol 52:314–325. doi: 10.1016/0022-2011(88)90141-3 CrossRefGoogle Scholar
- Hart BL (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav R 14:273–294. doi: 10.1016/S0149-7634(05)80038-7 CrossRefGoogle Scholar
- Hart BL (2005) The evolution of herbal medicine: behavioural perspectives. Anim Behav 70:975-989. doi: 10.1016/j.anbehav.2005.03.005
- Herbert EW Jr (1992) Honey bee nutrition. In: The hive and the honey bee (edt. Graham, JM). Published by Dadant & Sons, pp.197–233.Google Scholar
- Higes M, García-Palencia P, Martín-Hernández R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (microsporidia). J Invertebr Pathol 94:211–217. doi: 10.1016/j.jip.2006.11.001 PubMedCrossRefGoogle Scholar
- Higes M, Martín-Hernández R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41:375–392. doi: 10.1051/apido/2010019 CrossRefGoogle Scholar
- Huang Q, Kryger P, Le Conte Y, Moritz RFA (2012) Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 109:297–302. doi: 10.1016/j.jip.2012.01.004 PubMedCrossRefGoogle Scholar
- Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116. doi: 10.1146/annurev.micro.56.012302.160854 PubMedCrossRefGoogle Scholar
- Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10. doi: 10.1016/j.jip.2007.02.014
- König B (1985) Plant sources of propolis. Bee World 66:136–139Google Scholar
- König B, Dustmann JH (1986) Propolis und Viren: der gegenwärtige forschungsstand. Apidologie 17:334–336Google Scholar
- Kwakman PH, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CM, Zaat SA (2010) How honey kills bacteria. FASEB J 24:2576–2582. doi: 10.1096/fj.09-150789 PubMedCrossRefGoogle Scholar
- Lefèvre T, Chiang A, Kelavkar M, Li H, Li J, de Castillejo CL, Oliver L, Potini Y, Hunter MD, de Roode JC (2012) Behavioural resistance against a protozoan parasite in the monarch butterfly. J Anim Ecol 81:70–79. doi: 10.1111/j.1365-2656.2011.01901.x PubMedCrossRefGoogle Scholar
- Lozano GA (1998) Parasitic stress and self-medication in wild animals. Adv Stud Behav 27:291–317. doi: 10.1016/S0065-3454(08)60367-8 CrossRefGoogle Scholar
- Malone LA, Gatehouse HS, Tregidga EL (2001) Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). J Invertebr Pathol 77:258–268. doi: 10.1006/jipa.2001.5028 PubMedCrossRefGoogle Scholar
- Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89. doi: 10.1007/s00442-009-1431-9 PubMedCrossRefGoogle Scholar
- McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636. doi: 10.1111/ele.12257 PubMedCrossRefGoogle Scholar
- Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768. doi: 10.1038/nrn3357 PubMedCrossRefGoogle Scholar
- Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404. doi: 10.1146/annurev.ne.19.030196.002115 PubMedCrossRefGoogle Scholar
- Nicolson SW, de Veer L, Köhler A, Pirk CWW (2013) Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proc R Soc B 280:20131597. doi: 10.1098/rspb.2013.1597 PubMedCrossRefPubMedCentralGoogle Scholar
- Oelschlaegel S, Pieper L, Staufenbiel R, Gruner M, Zeippert L, Pieper B, Koelling-Speer I, Speer K (2012) Floral markers of cornflower (Centaurea cyanus) honey and its peroxide antibacterial activity for an alternative treatment of digital dermatitis. J Agric Food Chem 60:11811–11820. doi: 10.1021/jf303699t PubMedCrossRefGoogle Scholar
- Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26:242–248. doi: 10.1016/j.tree.2011.02.005 PubMedCrossRefGoogle Scholar
- Pirk CWW, Human H, Crewe RM, vanEngelsdorp D (2014) A survey of managed honey bee colony losses in the Republic of South Africa—2009 to 2011. J Apicult Res 53:35–42. doi: 10.3896/IBRA.1.53.1.03 CrossRefGoogle Scholar
- Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P (2011) Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41:747–769. doi: 10.1016/j.ibmb.2011.05.007 PubMedCrossRefGoogle Scholar
- Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
- Seeley TD (1997) Honey bee colonies are group-level adaptive units. Am Nat 150(Suppl 1):S22–S41. doi: 10.1086/286048 PubMedCrossRefGoogle Scholar
- Seeley TD (2010) Honeybee democracy. Princeton University Press, PrincetonGoogle Scholar
- Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insect Soc 23:495–512. doi: 10.1007/BF02223477 CrossRefGoogle Scholar
- Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63:3016–3022. doi: 10.1111/j.1558-5646.2009.00772.x PubMedCrossRefGoogle Scholar
- Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311. doi: 10.1051/apido/2010016 CrossRefGoogle Scholar
- Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7:e34601. doi: 10.1371/journal.pone.0034601 PubMedCrossRefPubMedCentralGoogle Scholar
- Strassmann J (2001) The rarity of multiple mating by females in the social hymenoptera. Insect Soc 48:01–13. doi: 10.1007/PL00001737 CrossRefGoogle Scholar
- Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA (2008) Functional properties of honey, propolis, and royal jelly. J Food Sci 73:R117–124. doi: 10.1111/j.1750-3841.2008.00966.x PubMedCrossRefGoogle Scholar
- Walker P, Crane E (1987) Constituents of propolis. Apidologie 18:327–334. doi: 10.1051/apido:19870404 CrossRefGoogle Scholar
- White JW Jr, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70. doi: 10.1016/0926-6569(63)90108-1 PubMedCrossRefGoogle Scholar
- Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi: 10.1146/annurev.ento.53.103106.093301 PubMedCrossRefGoogle Scholar