Behavioral Ecology and Sociobiology

, Volume 68, Issue 11, pp 1777–1784 | Cite as

Pathogen-associated self-medication behavior in the honeybee Apis mellifera

  • Bogdan I. Gherman
  • Andreas Denner
  • Otilia Bobiş
  • Daniel S. DezmireanEmail author
  • Liviu A. Mărghitaş
  • Helge Schlüns
  • Robin F. A. Moritz
  • Silvio ErlerEmail author
Original Paper


Honeybees, Apis mellifera, have several prophylactic disease defense strategies, including the foraging of antibiotic, antifungal, and antiviral compounds of plant products. Hence, honey and pollen contain many compounds that prevent fungal and bacterial growth and inhibit viral replication. Since these compounds are also fed to the larvae by nurse bees, they play a central role for colony health inside the hive. Here, we show that honeybee nurse bees, infected with the microsporidian gut parasite Nosema ceranae, show different preferences for various types of honeys in a simultaneous choice test. Infected workers preferred honeys with a higher antibiotic activity that reduced the microsporidian infection after the consumption of the honey. Since nurse bees feed not only the larvae but also other colony members, this behavior might be a highly adaptive form of therapeutic medication at both the individual and the colony level.


Honeybee Honey Antimicrobial activity Therapeutic self-medication Nosema ceranae Social immunity 



We would like to thank Victoriţa Bonta for the help with determining antibiotic contaminants and the two reviewers for most helpful comments. Financial support was granted by the project RoBeeTech (grant POS CCE 206/20.07.2010 SMIS code 618/12460 to L.A. Mărghitaş, D.S. Dezmirean, and R.F.A. Moritz) and an ERASMUS MUNDUS exchange program grant (A.D.). The authors declare that they have no conflict of interest.

Supplementary material

265_2014_1786_MOESM1_ESM.doc (50 kb)
ESM 1 (DOC 50.5 kb)


  1. Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MN, Manley-Harris M, Snow MJ (2008) Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 343:651–659. doi: 10.1016/j.carres.2007.12.011 PubMedCrossRefGoogle Scholar
  2. Alaux C, Ducloz F, Crauser D, Le Conte Y (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565. doi: 10.1098/rsbl.2009.0986 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Altaye SZ, Pirk CW, Crewe RM, Nicolson SW (2010) Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J Exp Biol 213:3311–3318. doi: 10.1242/jeb.046953 PubMedCrossRefGoogle Scholar
  4. Beetsma J (1979) The process of queen-worker differentiation in the honeybee. Bee World 60:24–39Google Scholar
  5. Blum MS, Novak AF, Taber S 3rd (1959) 10-Hydroxy-delta 2-decenoic acid, an antibiotic found in royal jelly. Science 130:452–453. doi: 10.1126/science.130.3373.452 PubMedCrossRefGoogle Scholar
  6. Camazine S (1991) Self-organizing pattern formation on the combs of honey bee colonies. Behav Ecol Sociobiol 28:61–76. doi: 10.1007/BF00172140 CrossRefGoogle Scholar
  7. Camazine S, Sneyd J, Jenkins MJ, Murray JD (1990) A mathematical model of self-organized pattern formation on the combs of honeybee colonies. J Theor Biol 147:553–571. doi: 10.1016/S0022-5193(05)80264-4 CrossRefGoogle Scholar
  8. Carson MC (1993) Simultaneous determination of multiple tetracycline residues in milk using metal chelate affinity chromatography. J AOAC Int 76:329–34PubMedGoogle Scholar
  9. Castella G, Chapuisat M, Moret Y, Christe P (2008) The presence of conifer resin decreases the use of the immune system in wood ants. Ecol Entomol 33:408–412. doi: 10.1111/j.1365-2311.2007.00983.x CrossRefGoogle Scholar
  10. Chapuisat M, Oppliger A, Magliano P, Christe P (2007) Wood ants use resin to protect themselves against pathogens. Proc R Soc B 274:2013–2017. doi: 10.1098/rspb.2007.0531
  11. Christe P, Oppliger A, Bancalà F, Castella G, Chapuisat M (2003) Evidence for collective medication in ants. Ecol Lett 6:19–22. doi: 10.1046/j.1461-0248.2003.00395.x CrossRefGoogle Scholar
  12. Clayton DH, Wolfe ND (1993) The adaptive significance of self-medication. Trends Ecol Evol 8:60–63. doi: 10.1016/0169-5347(93)90160-Q PubMedCrossRefGoogle Scholar
  13. Crailsheim K (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.). Apidologie 29:97–112. doi: 10.1051/apido:19980106 CrossRefGoogle Scholar
  14. de Roode JC, Lefèvre T (2012) Behavioral immunity in insects. Insects 3:789–820. doi: 10.3390/insects3030789 CrossRefGoogle Scholar
  15. Dezmirean GI, Mărghitaş LA, Bobiş O, Dezmirean DS, Bonta V, Erler S (2012) Botanical origin causes changes in nutritional profile and antioxidant activity of fermented products obtained from honey. J Agric Food Chem 60:8028–8035. doi: 10.1021/jf3022282 PubMedCrossRefGoogle Scholar
  16. Dustmann JH (1979) Antibacterial effect of honey. Apiacta 1:1–4Google Scholar
  17. Efem SE, Udoh KT, Iwara CI (1992) The antimicrobial spectrum of honey and its clinical significance. Infection 20:227–229. doi: 10.1007/BF02033065 PubMedCrossRefGoogle Scholar
  18. Evans JD, Schwarz RS (2011) Bees brought to their knees: microbes affecting honey bee health. Trends Microbiol 19:614–620. doi: 10.1016/j.tim.2011.09.003 PubMedCrossRefGoogle Scholar
  19. Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Biol 15:645–656. doi: 10.1111/j.1365-2583.2006.00682.x PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fries I, Feng F, da Silva A, Slemenda SB, Pieniazek NJ (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur J Protistol 32:356–365. doi: 10.1016/S0932-4739(96)80059-9
  21. Fouks B, Lattorff HMG (2011) Recognition and avoidance of contaminated flowers by foraging bumblebees (Bombus terrestris). PLoS One 6:e26328. doi: 10.1371/journal.pone.0026328 PubMedCrossRefPubMedCentralGoogle Scholar
  22. Frost EH, Shutler D, Hillier NK (2012) The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats. Naturwissenschaften 99:677–686. doi: 10.1007/s00114-012-0955-8 PubMedCrossRefGoogle Scholar
  23. Fujiwara S, Imai J, Fujiwara M, Yaeshima T, Kawashima T, Kobayashi K (1990) A potent antibacterial protein in royal jelly. purification and determination of the primary structure of royalisin. J Biol Chem 265:11333–11337PubMedGoogle Scholar
  24. Galizia G, Eisenhardt D, Giurfa M (2011) Honeybee neurobiology and behavior: a tribute to Randolf Menzel. Springer, BerlinGoogle Scholar
  25. Gilliam M, Taber S, Lorenz BJ, Prest DB (1988) Factors affecting development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphaera apis. J Invertebr Pathol 52:314–325. doi: 10.1016/0022-2011(88)90141-3 CrossRefGoogle Scholar
  26. Hart BL (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav R 14:273–294. doi: 10.1016/S0149-7634(05)80038-7 CrossRefGoogle Scholar
  27. Hart BL (2005) The evolution of herbal medicine: behavioural perspectives. Anim Behav 70:975-989. doi: 10.1016/j.anbehav.2005.03.005
  28. Herbert EW Jr (1992) Honey bee nutrition. In: The hive and the honey bee (edt. Graham, JM). Published by Dadant & Sons, pp.197–233.Google Scholar
  29. Higes M, García-Palencia P, Martín-Hernández R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (microsporidia). J Invertebr Pathol 94:211–217. doi: 10.1016/j.jip.2006.11.001 PubMedCrossRefGoogle Scholar
  30. Higes M, Martín-Hernández R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidologie 41:375–392. doi: 10.1051/apido/2010019 CrossRefGoogle Scholar
  31. Huang Q, Kryger P, Le Conte Y, Moritz RFA (2012) Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 109:297–302. doi: 10.1016/j.jip.2012.01.004 PubMedCrossRefGoogle Scholar
  32. Keeling PJ, Fast NM (2002) Microsporidia: biology and evolution of highly reduced intracellular parasites. Annu Rev Microbiol 56:93–116. doi: 10.1146/annurev.micro.56.012302.160854 PubMedCrossRefGoogle Scholar
  33. Klee J, Besana AM, Genersch E, Gisder S, Nanetti A, Tam DQ, Chinh TX, Puerta F, Ruz JM, Kryger P, Message D, Hatjina F, Korpela S, Fries I, Paxton RJ (2007) Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J Invertebr Pathol 96:1–10. doi: 10.1016/j.jip.2007.02.014
  34. König B (1985) Plant sources of propolis. Bee World 66:136–139Google Scholar
  35. König B, Dustmann JH (1986) Propolis und Viren: der gegenwärtige forschungsstand. Apidologie 17:334–336Google Scholar
  36. Kwakman PH, te Velde AA, de Boer L, Speijer D, Vandenbroucke-Grauls CM, Zaat SA (2010) How honey kills bacteria. FASEB J 24:2576–2582. doi: 10.1096/fj.09-150789 PubMedCrossRefGoogle Scholar
  37. Lefèvre T, Chiang A, Kelavkar M, Li H, Li J, de Castillejo CL, Oliver L, Potini Y, Hunter MD, de Roode JC (2012) Behavioural resistance against a protozoan parasite in the monarch butterfly. J Anim Ecol 81:70–79. doi: 10.1111/j.1365-2656.2011.01901.x PubMedCrossRefGoogle Scholar
  38. Lozano GA (1998) Parasitic stress and self-medication in wild animals. Adv Stud Behav 27:291–317. doi: 10.1016/S0065-3454(08)60367-8 CrossRefGoogle Scholar
  39. Malone LA, Gatehouse HS, Tregidga EL (2001) Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). J Invertebr Pathol 77:258–268. doi: 10.1006/jipa.2001.5028 PubMedCrossRefGoogle Scholar
  40. Manson JS, Otterstatter MC, Thomson JD (2010) Consumption of a nectar alkaloid reduces pathogen load in bumble bees. Oecologia 162:81–89. doi: 10.1007/s00442-009-1431-9 PubMedCrossRefGoogle Scholar
  41. McArt SH, Koch H, Irwin RE, Adler LS (2014) Arranging the bouquet of disease: floral traits and the transmission of plant and animal pathogens. Ecol Lett 17:624–636. doi: 10.1111/ele.12257 PubMedCrossRefGoogle Scholar
  42. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13:758–768. doi: 10.1038/nrn3357 PubMedCrossRefGoogle Scholar
  43. Menzel R, Müller U (1996) Learning and memory in honeybees: from behavior to neural substrates. Annu Rev Neurosci 19:379–404. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  44. Nicolson SW, de Veer L, Köhler A, Pirk CWW (2013) Honeybees prefer warmer nectar and less viscous nectar, regardless of sugar concentration. Proc R Soc B 280:20131597. doi: 10.1098/rspb.2013.1597 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Oelschlaegel S, Pieper L, Staufenbiel R, Gruner M, Zeippert L, Pieper B, Koelling-Speer I, Speer K (2012) Floral markers of cornflower (Centaurea cyanus) honey and its peroxide antibacterial activity for an alternative treatment of digital dermatitis. J Agric Food Chem 60:11811–11820. doi: 10.1021/jf303699t PubMedCrossRefGoogle Scholar
  46. Parker BJ, Barribeau SM, Laughton AM, de Roode JC, Gerardo NM (2011) Non-immunological defense in an evolutionary framework. Trends Ecol Evol 26:242–248. doi: 10.1016/j.tree.2011.02.005 PubMedCrossRefGoogle Scholar
  47. Pirk CWW, Human H, Crewe RM, vanEngelsdorp D (2014) A survey of managed honey bee colony losses in the Republic of South Africa—2009 to 2011. J Apicult Res 53:35–42. doi: 10.3896/IBRA. CrossRefGoogle Scholar
  48. Ratcliffe NA, Mello CB, Garcia ES, Butt TM, Azambuja P (2011) Insect natural products and processes: new treatments for human disease. Insect Biochem Mol Biol 41:747–769. doi: 10.1016/j.ibmb.2011.05.007 PubMedCrossRefGoogle Scholar
  49. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  50. Seeley TD (1997) Honey bee colonies are group-level adaptive units. Am Nat 150(Suppl 1):S22–S41. doi: 10.1086/286048 PubMedCrossRefGoogle Scholar
  51. Seeley TD (2010) Honeybee democracy. Princeton University Press, PrincetonGoogle Scholar
  52. Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insect Soc 23:495–512. doi: 10.1007/BF02223477 CrossRefGoogle Scholar
  53. Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63:3016–3022. doi: 10.1111/j.1558-5646.2009.00772.x PubMedCrossRefGoogle Scholar
  54. Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41:295–311. doi: 10.1051/apido/2010016 CrossRefGoogle Scholar
  55. Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7:e34601. doi: 10.1371/journal.pone.0034601 PubMedCrossRefPubMedCentralGoogle Scholar
  56. Strassmann J (2001) The rarity of multiple mating by females in the social hymenoptera. Insect Soc 48:01–13. doi: 10.1007/PL00001737 CrossRefGoogle Scholar
  57. Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Alvarez JA (2008) Functional properties of honey, propolis, and royal jelly. J Food Sci 73:R117–124. doi: 10.1111/j.1750-3841.2008.00966.x PubMedCrossRefGoogle Scholar
  58. Walker P, Crane E (1987) Constituents of propolis. Apidologie 18:327–334. doi: 10.1051/apido:19870404 CrossRefGoogle Scholar
  59. White JW Jr, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70. doi: 10.1016/0926-6569(63)90108-1 PubMedCrossRefGoogle Scholar
  60. Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi: 10.1146/annurev.ento.53.103106.093301 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Bogdan I. Gherman
    • 1
  • Andreas Denner
    • 1
  • Otilia Bobiş
    • 1
  • Daniel S. Dezmirean
    • 1
    Email author
  • Liviu A. Mărghitaş
    • 1
  • Helge Schlüns
    • 1
    • 4
  • Robin F. A. Moritz
    • 1
    • 2
    • 3
  • Silvio Erler
    • 1
    • 2
    Email author
  1. 1.Department of Apiculture and SericultureUniversity of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania
  2. 2.Institut für Biologie, Molekulare ÖkologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  4. 4.Behavioural BiologyUniversity of OsnabrückOsnabrückGermany

Personalised recommendations