Behavioral Ecology and Sociobiology

, Volume 68, Issue 7, pp 1059–1072 | Cite as

Benefits of memory for the evolution of tag-based cooperation in structured populations

  • Tarik Hadzibeganovic
  • Francisco W. S. Lima
  • Dietrich Stauffer
Original Paper


We study the effects of working memory capacity and network rewiring probability on the evolution of cooperation in the standard and modified versions of an agent-based model of tag-mediated altruism. In our evolutionary model, computational agents populate a large complex network, engage into multiplayer Prisoner’s Dilemma-like interactions, and reproduce sexually. Agents carry discernible phenotypic traits subject to mutation, memorize their own experiences, and employ different strategies when interacting with different types of co-players. Choices made are selected from a pool of two conditional and two unconditional strategies, depending on the available memory contents and phenotypic similarity among interactors. For the dominating strategy in our standard model version, we found a strong dependence of cooperation on network structure and a weak one on memory, whereas in the modified version, the structural effect was weaker than that of memory. Most importantly, we found that the previously reported decline of cooperation in memory-based models, typically observed at a high memory capacity, is now prevented with the help of tags. This suggests that the evolutionary advantages of memory capacity limits may be far more complex than previously assumed. For much smaller systems, we observed a quasi-symmetric alternation of the two winning groups of strategists. This result provides an example of ingroup biased interactions that are characterized by bursts of intra-tag cooperation interspersed with periods of unconditional transient altruism. Such switches of strategies may represent a boosting mechanism necessary for the emergence and stability of global altruism in its early evolutionary stages.


Agent-based modeling Evolution of cooperation Phenotypic similarity Memory Networks 



The authors gratefully thank the National Council for Scientific and Technological Development of Brazil (CNPq) for the provided financial support. Comments of three anonymous reviewers on a previous version of this paper are also greatly acknowledged. The preparation of this work was partially supported by SGI®Altix®1350 and CENAPAD-UNICAMP-USP, SP, BRAZIL.


  1. Alonso-Sanz R (2009) Spatial order prevails over memory in boosting cooperation in the iterated prisoner’s dilemma. Chaos 19:023102Google Scholar
  2. Alonso-Sanz R, Martin M (2006) Memory boosts cooperation. Int J Mod Phys C 17:841–852CrossRefGoogle Scholar
  3. Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolution of cooperation by phenotypic similarity. Proc Natl Acad Sci USA 106:8597-8600PubMedCentralPubMedCrossRefGoogle Scholar
  4. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390-1396PubMedCrossRefGoogle Scholar
  5. Axelrod R, Hammond RA, Grafen A (2004) Altruism via kin-selection strategies that rely on arbitrary tags with which they coevolve. Evolution 58:1833–1838PubMedCrossRefGoogle Scholar
  6. Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020PubMedCrossRefGoogle Scholar
  7. Bode NWF, Wood AJ, Franks DW (2011) Social networks and models for collective motion in animals. Behav Ecol Sociobiol 65:117–130CrossRefGoogle Scholar
  8. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025–1028PubMedCrossRefGoogle Scholar
  9. Cassar A (2007) Coordination and cooperation in local, random and small world networks: experimental evidence. Games Econ Behav 58:209–230CrossRefGoogle Scholar
  10. Choi JK, Bowles S (2007) The coevolution of parochial altruism and war. Science 318:636–640PubMedCrossRefGoogle Scholar
  11. Cohen E (2012) The evolution of tag-based cooperation in humans: the case for accent. Curr Anthropol 53:588–616CrossRefGoogle Scholar
  12. Colman AM, Browning L, Pulford BD (2012) Spontaneous similarity discrimination in the evolution of cooperation. J Theor Biol 299:162–171PubMedCrossRefGoogle Scholar
  13. Croft DP, Darden SK, Ruxton GD (2009) Predation risk as a driving force for phenotypic assortment: a cross-population comparison. Proc Biol Sci 276:1899–1904PubMedCentralPubMedCrossRefGoogle Scholar
  14. Croft DP, Krause J, Darden SK, Ramnarine IW, Faria JJ, James R (2009) Behavioural trait assortment in a social network: patterns and implications. Behav Ecol Sociobiol 63:1495–1503CrossRefGoogle Scholar
  15. Curry O, Dunbar RIM (2011) Altruism in networks: the effect of connections. Biol Lett 7:651–653PubMedCentralPubMedCrossRefGoogle Scholar
  16. De Dreu CKW, Greer LL, Van Kleef GA, Shalvi S, Handgraaf MJJ (2011) Oxytocin promotes human ethnocentrism. Proc Natl Acad Sci USA 108:1262–1266PubMedCentralPubMedCrossRefGoogle Scholar
  17. de Waal FBM (2000) Attitudinal reciprocity in food sharing among brown capuchin monkeys. Anim Behav 60:253–261PubMedCrossRefGoogle Scholar
  18. Declerck CH, Boone C, Emonds G (2013) When do people cooperate? The neuroeconomics of prosocial decision making. Brain Cogn 81:95–117PubMedCrossRefGoogle Scholar
  19. Efferson C, Lalive R, Fehr E (2008) The coevolution of cultural groups and ingroup favoritism. Science 321:1844–1849PubMedCrossRefGoogle Scholar
  20. Fewell JH (2003) Social insect networks. Science 301:1867–1870PubMedCrossRefGoogle Scholar
  21. Franks DW, Ruxton GD, James R (2010) Sampling animal association networks with the gambit of the group. Behav Ecol Sociobiol 64:493–503CrossRefGoogle Scholar
  22. Fu F, Tarnita CE, Christakis NA, Wang L, Rand DG, Nowak MA (2012) Evolution of in-group favoritism. Sci Rep 2:460PubMedCentralPubMedGoogle Scholar
  23. García J, van den Bergh JCJM (2011) Evolution of parochial altruism by multilevel selection. Evol Hum Behav 32:277–287CrossRefGoogle Scholar
  24. Gardner A, West SA (2009) Greenbeards. Evolution 64:25-38PubMedCrossRefGoogle Scholar
  25. Gracia-Lázaro C, Ferrer A, Ruíz G, Tarancón A, Cuesta JA, Sánchez A, Moreno Y (2012) Heterogeneous networks do not promote cooperation when humans play a Prisoner’s dilemma. Proc Natl Acad Sci USA 109:12922–12926Google Scholar
  26. Hadzibeganovic T, Lima FWS, Stauffer D (2012) Evolution of tag-mediated altruistic behavior in one-shot encounters on large-scale complex networks. Comput Phys Commun 183:2315– 2321CrossRefGoogle Scholar
  27. Hadzibeganovic T, Stauffer D, Schulze C (2009) Agent-based computer simulations of language choice dynamics. Ann NY Acad Sci 1167:221–229PubMedCrossRefGoogle Scholar
  28. Hales D (2005) Change your tags fast! A necessary condition for cooperation?Lect Notes Comput Sci 3415:89–98CrossRefGoogle Scholar
  29. Hamilton WD (1964) The genetical evolution of social behaviour, I & II. J Theor Biol 7:1–52PubMedCrossRefGoogle Scholar
  30. Hammond R A, Axelrod R (2006a) The evolution of ethnocentrism. J Confl Resolut 50:926–936CrossRefGoogle Scholar
  31. Hammond RA, Axelrod R (2006b) Evolution of contingent altruism when cooperation is expensive. Theor Popul Biol 69:333–338PubMedCrossRefGoogle Scholar
  32. Hartshorn M, Kaznatcheev A, Shultz T (2013) The evolutionary dominance of ethnocentric cooperation. J Artif Soc Soc Simul 16:7Google Scholar
  33. Hauert C, Doebeli M (2004) Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature 428:643–646PubMedCrossRefGoogle Scholar
  34. Horváth G, Kovárik J, Mengel F (2012) Limited memory can be beneficial for the evolution of cooperation. J Theor Biol 300:193–205PubMedCrossRefGoogle Scholar
  35. Ihara Y (2011) Evolution of culture-dependent discriminate sociality: a gene-culture coevolutionary model. Philos Trans R Soc B 366:889–900CrossRefGoogle Scholar
  36. Jansson F (2013) Pitfalls in spatial modelling of ethnocentrism: a simulation analysis of the model of Hammond and Axelrod. J Artif Soc Soc Simul 16:2Google Scholar
  37. Jansen VAA, van Baalen M (2006) Altruism through beard chromodynamics. Nature 440:663-666PubMedCrossRefGoogle Scholar
  38. Keller L, Ross KG (1998) Selfish genes: a green beard in the red fire ant. Nature 394:573–575CrossRefGoogle Scholar
  39. Kim J-W (2010) A tag-based evolutionary Prisoner’s Dilemma game on networks with different topologies. J Artif Soc Soc Simul 13:2Google Scholar
  40. Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311:88–90PubMedCrossRefGoogle Scholar
  41. Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, OxfordGoogle Scholar
  42. Krupp DB, DeBruine LM, Barclay P (2008) A cue of kinship promotes cooperation for the public good. Evol Hum Behav 29:49–55CrossRefGoogle Scholar
  43. Laird RA (2011) Green beard effect predicts the evolution of traitorousness in the two-tag Prisoner’s Dilemma. J Theor Biol 288:84–91PubMedCrossRefGoogle Scholar
  44. Laird RA (2012) Evolutionary strategy dynamics for tag-based cooperation and defection in the spatial and aspatial Snowdrift game. Intl J Bifurcat Chaos 22:1230039Google Scholar
  45. Lima FWS, Hadzibeganovic T, Stauffer D (2009) Evolution of ethnocentrism on undirected and directed Barabási-Albert networks. Physica A 388:4999–5004CrossRefGoogle Scholar
  46. Lusseau D, Newman MEJ (2004) Identifying the role that animals play in their social networks. Proc R Soc Lond B 271:S477–S481CrossRefGoogle Scholar
  47. Marlowe FW (2005) Hunter-gatherers and human evolution. Evol Anthropol 14:54–67CrossRefGoogle Scholar
  48. Marshall JAR (2011) Ultimate causes and the evolution of altruism. Behav Ecol Sociobiol 65:503–512CrossRefGoogle Scholar
  49. Masuda N (2012) Ingroup favoritism and intergroup cooperation under indirect reciprocity based on group reputation. J Theor Biol 311:8–18PubMedCrossRefGoogle Scholar
  50. Maynard Smith J, Szathmáry E (1997) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  51. McAvity DM, Bristow T, Bunker E, Dreyer A (2013) Perception without self-matching in conditional tag based cooperation. J Theor Biol 333:58–67PubMedCrossRefGoogle Scholar
  52. Milinski M, Semmann D, Bakker TCM, Krambeck HJ (2001) Cooperation through indirect reciprocity: image scoring or standing strategy? Proc R Soc Lond B 268:2495–2501CrossRefGoogle Scholar
  53. Molenberghs P (2013) The neuroscience of in-group bias. Neurosci Biobehav Rev 37:1530–1536PubMedCrossRefGoogle Scholar
  54. Moreira J, Vukov J, Sousa C, Santos FC, d’Almeida AF, Santos MD, Pacheco JM (2013) Individual memory and the emergence of cooperation. Anim Behav 85:233–239CrossRefGoogle Scholar
  55. Nettle D, Grace JB, Choisy M, Cornell HV, Guegan J-F, Hochberg ME (2007) Cultural diversity, economic development and societal instability. PLoS ONE 2:e929PubMedCentralPubMedCrossRefGoogle Scholar
  56. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563PubMedCentralPubMedCrossRefGoogle Scholar
  57. Nowak MA, Sigmund K (2005) Evolution of indirect reciprocity. Nature 437:1291–1298PubMedCrossRefGoogle Scholar
  58. Nowak MA, Tarnita CE, Antal T (2010) Evolutionary dynamics in structured populations. Philos Trans R Soc B 365:19–30CrossRefGoogle Scholar
  59. Ohtsuki H, Hauert C (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502– 505PubMedCentralPubMedCrossRefGoogle Scholar
  60. Qin S-M, Chen Y, Zhao X-Y, Shi J. (2008) Effect of memory on the prisoner’s dilemma game in a square lattice. Phys Rev E 78:041129Google Scholar
  61. Qiu T, Hadzibeganovic T, Chen G, Zhong L-X, Wu X-R (2010) Cooperation in the snowdrift game on directed small-world networks under self-questioning and noisy conditions. Comput Phys Commun 181:2057–2062CrossRefGoogle Scholar
  62. Queller DC, Ponte E, Bozzaro S, Strassmann JE (2003) Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299:105–106PubMedCrossRefGoogle Scholar
  63. Railsback SF, Grimm V (2011) Agent-based and individual-based modeling: a practical introduction. Princeton University Press, PrincetonGoogle Scholar
  64. Rand DG, Nowak MA (2013) Human cooperation. Trends Cogn Sci 17:413–425PubMedCrossRefGoogle Scholar
  65. Riolo RL, Cohen MD, Axelrod R (2001) Evolution of cooperation without reciprocity. Nature 414:441–443PubMedCrossRefGoogle Scholar
  66. Sánchez AD, Lopez JD, Rodriguez MA (2002) Nonequilibrium phase transitions in directed small-world networks. Phys Rev Lett 88:048701PubMedCrossRefGoogle Scholar
  67. Santos FC, Pacheco JM (2006) A new route to the evolution of cooperation. J Evol Biol 19:726–733PubMedCrossRefGoogle Scholar
  68. Semmann D (2012) Conditional cooperation can hinder network reciprocity. Proc Natl Acad Sci USA 109:12846–12847PubMedCentralPubMedCrossRefGoogle Scholar
  69. Semmann D, Krambeck HJ, Milinski M (2005) Reputation is valuable within and outside one’s own social group. Behav Ecol Sociobiol 57:611–616CrossRefGoogle Scholar
  70. Shutters ST, Hales D (2013) Tag-mediated altruism is contingent on how cheaters are defined. J Artif Soc Soc Simulat 16:4Google Scholar
  71. Sigmund K (2009) Sympathy and similarity: the evolutionary dynamics of cooperation. Proc Natl Acad Sci USA 106:8405– 8406PubMedCentralPubMedCrossRefGoogle Scholar
  72. Sinervo B, Chaine A, Clobert J, Calsbeek R, Hazard L, Lancaster L, McAdam AG, Alonzo S, Corrigan G, Hochberg ME (2006) Selfrecognition, color signals, and cycles of greenbeard mutualism and altruism. Proc Natl Acad Sci USA 103:7372–7377PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sinervo B, Clobert J (2003) Morphs, dispersal behavior, genetic similarity, and the evolution of cooperation. Science 300:1949–1951PubMedCrossRefGoogle Scholar
  74. Stauffer D (2013) A biased review of sociophysics. J Stat Phys 151:9–20CrossRefGoogle Scholar
  75. Stevens JR, Volstorf J, Schooler LJ, Rieskamp J (2011) Forgetting constrains the emergence of cooperative decision strategies. Front Psychol 1:235PubMedCentralPubMedCrossRefGoogle Scholar
  76. Sugihara G, Ye H (2009) Cooperative network dynamics. Nature 458:979–980PubMedCrossRefGoogle Scholar
  77. Summers K, Crespi B (2005) Cadherins in maternal-foetal interactions: red queen with a green beard? Proc R Soc Lond B 272:643–649CrossRefGoogle Scholar
  78. Tomasello M (2009) Why we cooperate. MIT Press, CambridgeGoogle Scholar
  79. Traulsen A, Nowak MA (2007) Chromodynamics of cooperation in finite populations. PLoS ONE 3:e270CrossRefGoogle Scholar
  80. Traulsen A, Semmann D, Sommerfeld RD, Krambeck HJ, Milinski M (2010) Human strategy updating in evolutionary games. Proc Natl Acad Sci USA 107:2962–2966PubMedCentralPubMedCrossRefGoogle Scholar
  81. Van Bavel JJ, Packer DJ, Cunningham WA (2008) The neural substrates of in-group bias: a functional magnetic resonance imaging investigation. Psychol Sci 19:1131–1139PubMedCrossRefGoogle Scholar
  82. van Veelen M, García J, Rand DG, Nowak MA (2012) Direct reciprocity in structured populations. Proc Natl Acad Sci USA 109:9929–9934PubMedCentralPubMedCrossRefGoogle Scholar
  83. Voelkl B, Kasper C (2009) Social structure of primate interaction networks facilitates the emergence of cooperation. Biol Lett 5:462–464PubMedCentralPubMedCrossRefGoogle Scholar
  84. Volstorf J, Rieskamp J, Stevens JR (2011) The good, the bad, and the rare: memory for partners in social interactions. PLoS ONE 6:e18945PubMedCentralPubMedCrossRefGoogle Scholar
  85. West SA, Griffin AS, Gardner A (2006) Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J Evol Biol 20:425–432Google Scholar
  86. White CE, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc B 362:1135–1148CrossRefGoogle Scholar
  87. Wu T, Fu F, Zhang Y, Wang L (2013) Adaptive tag switching reinforces the coevolution of contingent cooperation and tag diversity. J Theor Biol 330:45–55PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tarik Hadzibeganovic
    • 1
  • Francisco W. S. Lima
    • 2
  • Dietrich Stauffer
    • 3
  1. 1.Department of PsychologyUniversity of GrazGrazAustria
  2. 2.Departamento de FísicaUniversidade Federal do PiauíTeresinaBrazil
  3. 3.Institute for Theoretical PhysicsCologne UniversityKölnGermany

Personalised recommendations