Behavioral Ecology and Sociobiology

, Volume 67, Issue 5, pp 727–735

Colony take-over and brood survival in temporary social parasites of the ant genus Formica

  • Anton Chernenko
  • Marta Vidal-Garcia
  • Heikki Helanterä
  • Liselotte Sundström
Original Paper

Abstract

Parasites reduce host fitness, and so instigate counter adaptations by their hosts. In temporary social parasitism, usurpers must not only enter the colony unharmed, but also have their eggs reared by the host workers. We introduced parasitic Formica lugubris and Formica aquilonia queens into queen right and orphaned fragments of three host species, Formica cinerea, Formica picea and Formica fusca, and show that workers of all three host species kill over 40 % of the introduced queens within 10 days, regardless of the presence/absence of a resident queen, and parasite species. More parasite queens died in F. cinerea than in F. picea and F. fusca. There were no major differences in survival between the parasite species (except that F. lugubris survived longer than F. aquilonia in F. fusca colonies compared to F. picea colonies), but parasite queens survived longer in orphaned than in queen right fragments of F. fusca. Experimental introduction of parasite (F. aquilonia) eggs into orphaned colonies of F. fusca showed that none of the parasite eggs were reared until pupation; whereas on average, 12 % of the con-specific hetero-colonial eggs introduced in the same manner were reared until pupation. In all colonies that received parasite brood, all offspring consisted of worker-laid males, whereas the corresponding value was 50 % for colonies that received con-specific hetero-colonial brood. Thus, when the risks of entering host colonies and brood failure are combined, the rate of successful colony take-over is very low. Moreover, the host workers can to some extent alleviate the costs of parasitism by producing a final batch of own offspring.

Keywords

Social parasitism Social Ant Brood Recognition Egg 

Supplementary material

265_2013_1496_MOESM1_ESM.doc (49 kb)
ESM 1(DOC 49 kb)

References

  1. Achenbach A, Foitzik S (2009) First evidence for slave rebellion: enslaved ant workers systematically kill the brood of their social parasite Protomognathus americanus. Evol 63(4):1068–1075CrossRefGoogle Scholar
  2. Baer B, Schmid-Hempel P (1999) Experimental variation in polyandry affects parasite loads and fitness in a bumble-bee. Nat 397(6715):151–154CrossRefGoogle Scholar
  3. Beekman M, Oldroyd BP (2008) When workers disunite: intraspecific parasitism in eusocial bees. Annu Rev Entomol 53:19–37PubMedCrossRefGoogle Scholar
  4. Bhatkar A, Whitcomb WH (1970) Artificial diet for rearing various species of ants. Fla Entomol 53(4):229–232CrossRefGoogle Scholar
  5. Buczkowski G, Silverman J (2005) Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim Behav 69(3):741–749CrossRefGoogle Scholar
  6. Buschinger A (1986) Evolution of social parasitism in ants. Trends Ecol Evol 1(6):155–160PubMedCrossRefGoogle Scholar
  7. Buschinger A (2009) Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecol News 12:219–235Google Scholar
  8. Bush AO (2001) Parasitism: the diversity and ecology of animal parasites. Cambridge University Press, CambridgeGoogle Scholar
  9. Cervo R (2006) Polistes wasps and their social parasites: an overview. Ann Zool Fennici 43:531–549Google Scholar
  10. Chapman NC, Nanork P, Gloag RS, Wattanachaiyingcharoen W, Beekman M, Oldroyd BP (2009) Queenless colonies of the Asian red dwarf honeybee Apis florea are infiltrated by workers from other queenless colonies. Behav Ecol 20(4):817–820CrossRefGoogle Scholar
  11. Chapuisat M (1996) Characterization of microsatellite loci in Formica lugubris B and their variability in other ant species. Mol Ecol 5(4):599–601PubMedCrossRefGoogle Scholar
  12. Chernenko A, Helanterä H, Sundström L (2011) Egg recognition and social parasitism in Formica ants. Ethol 117(12):1081–1092CrossRefGoogle Scholar
  13. Chernenko A, Helanterä H, Sundström L (2012) Colony kin structure and queen recruitment in the ant Formica fusca (Hymenoptera: Formicidae). Myrmecol News 16:93–100Google Scholar
  14. Collingwood CA (1979) The Formicidae (Hymenoptera) of Fennoscandia and Denmark. Fauna Entomologica Scnadinavica. Scandinavian Science Press Ltd., KlampenborgGoogle Scholar
  15. Crosland MWJ (1990) The influence of the queen, colony size and worker ovarian development on nestmate recognition in the ant Rhytidoponera confusa. Anim Behav 39(3):413–425CrossRefGoogle Scholar
  16. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, OxfordGoogle Scholar
  17. Czechowski W, Marko B (2005) Competition between Formica cinerea Mayr (Hymenoptera: Formicidae) and co-occurring ant species, with special reference to Formica rufa L.: direct and indirect interferences. Pol J Ecol 53(4):467–487Google Scholar
  18. Czechowski W, Vepsäläinen K (1999) Plesiobiosis between Formica fusca L. and Formica aquilonia Yarr. (Hymenoptera, Formicidae). Ann Zool Wars 49:125–127Google Scholar
  19. Czechowski W, Radchenko A, Czechowska W (2002) The ants of Poland. Museum & Institute of Zoology, WarsawGoogle Scholar
  20. Davies NB (2000) Cuckoos, cowbirds and other cheats. T. & A. D. Poyser, LondonGoogle Scholar
  21. Davies NB, Welbergen JA (2008) Cuckoo–hawk mimicry? An experimental test. Proc R Soc B 275(1644):1817–1822PubMedCrossRefGoogle Scholar
  22. Davies NB, Bourke AF, de L Brooke M (1989) Cuckoos and parasitic ants: interspecific brood parasitism as an evolutionary arms race. Trends Ecol Evol 4(9):274–278PubMedCrossRefGoogle Scholar
  23. Dlusskij GM (1967) Murav'i roda Formika. Nauka, MoscowGoogle Scholar
  24. Faber W (1967) Beiträge zur Kenntnis sozialparasitischer Ameisen, 1: Lasius (Austrolasius n. sg.) reginae n.sp., eine neue temporär sozialparasitische Erdameise aus Österreich (Hym. Formicidae). Pflanzenschutz-Ber 36:73–107Google Scholar
  25. Foitzik S, DeHeer CJ, Hunjan DN, Herbers JM (2001) Coevolution in host–parasite systems: behavioural strategies of slave-making ants and their hosts. Proc R Soc B 268(1472):1139–1146PubMedCrossRefGoogle Scholar
  26. Fürst MA, Durey M, Nash DR (2012) Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc R Soc B 279(1728):516–522PubMedCrossRefGoogle Scholar
  27. Gyllenstrand N, Gertsch PJ, Pamilo P (2002) Polymorphic microsatellite DNA markers in the ant Formica exsecta. Mol Ecol Notes 2(1):67–69CrossRefGoogle Scholar
  28. Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35(2):282–290CrossRefGoogle Scholar
  29. Härtel S, Neumann P, Kryger P, von der Heide C, Moltzer G-J, Crewe RM, van Praagh JP, Moritz RFA (2006) Infestation levels of Apis mellifera scutellata swarms by socially parasitic Cape honeybee workers (Apis mellifera capensis). Apidologie 37(4):462–470CrossRefGoogle Scholar
  30. Hasegawa E, Imai S (2004) Characterization of microsatellite loci in red wood ants Formica (s. str.) spp. and the related genus Polyergus. Mol Ecol Notes 4(2):200–203CrossRefGoogle Scholar
  31. Helanterä H, Sundström L (2007) Worker policing and nest mate recognition in the ant Formica fusca. Behav Ecol Sociobiol 61:1143–1149CrossRefGoogle Scholar
  32. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, MassachusettsGoogle Scholar
  33. Hughes WOH, Boomsma JJ (2004) Genetic diversity and disease resistance in leaf-cutting ant societies. Evol 58(6):1251–1260Google Scholar
  34. Hughes WOH, Boomsma JJ (2006) Does genetic diversity hinder parasite evolution in social insect colonies? J Evol Biol 19(1):132–143PubMedCrossRefGoogle Scholar
  35. Johnson CA, Topoff H, Vander Meer RK, Lavine B (2005) Do these eggs smell funny to you?: an experimental study of egg discrimination by hosts of the social parasite Polyergus breviceps (Hymenoptera: Formicidae). Behav Ecol Sociobiol 57(3):245–255CrossRefGoogle Scholar
  36. Kilner RM, Langmore NE (2011) Cuckoos versus hosts in insects and birds: adaptations, counter-adaptations and outcomes. Biol Rev 86(4):836–852PubMedCrossRefGoogle Scholar
  37. Lenoir A, Fresneau D, Errard C, Hefetz A (1999) The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Detrain C, Deneubourg JL, Pasteels J (eds) Information processing in social insects. Birkhauser, Basel, pp 219–237CrossRefGoogle Scholar
  38. Lenoir A, D'Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedCrossRefGoogle Scholar
  39. Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nat 430(6999):557–560CrossRefGoogle Scholar
  40. Lorenzi MC (2006) The result of an arms race: the chemical strategies of Polistes social parasites. Ann Zool Fennici 43:550–563Google Scholar
  41. Lyon BE, Eadie JM (2008) Conspecific brood parasitism in birds: a life-history perspective. Annu Rev Ecol Evol Syst 39(1):343–363CrossRefGoogle Scholar
  42. Martin SJ, Helanterä H, Drijfhout FP (2008a) Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol J Linn Soc 95(1):131–140CrossRefGoogle Scholar
  43. Martin SJ, Takahashi J, Ono M, Drijfhout FP (2008b) Is the social parasite Vespa dybowskii using chemical transparency to get her eggs accepted? J Insect Physiol 54(4):700–707PubMedCrossRefGoogle Scholar
  44. Martin SJ, Helanterä H, Drijfhout FP (2011) Is parasite pressure a driver of chemical cue diversity in ants? Proc R Soc B 278(1705):496–503PubMedCrossRefGoogle Scholar
  45. Mori A, Le Moli F (1998) Mating behavior and colony founding of the slave-making ant Formica sanguinea (Hymenoptera: Formicidae). J Insect Behav 11(2):235–245CrossRefGoogle Scholar
  46. Mori A, D'Ettorre P, Le Moli F (1995) Host nest usurpation and colony foundation in the European amazon ant; Polyergus rufescens Latr. (Hymenoptera: Formicidae). Insect Soc 42(3):279–286CrossRefGoogle Scholar
  47. Pamilo P, Chautems D, Cherix D (1992) Genetic differentiation of disjunct populations of the ants Formica aquilonia and Formica lugubris in Europe. Insect Soc 39(1):15–29CrossRefGoogle Scholar
  48. Payne RB (1977) The ecology of brood parasitism in birds. Annu Rev Ecol Syst 8(1):1–28CrossRefGoogle Scholar
  49. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic-markers. Evol 43(2):258–275CrossRefGoogle Scholar
  50. Raczkowski JM, Luque GM (2011) Colony founding and social parasitism in Lasius (acanthomyops). Insect Soc 58(2):237–244Google Scholar
  51. Reeve HK (1989) The evolution of conspecific acceptance thresholds. Am Nat 133(3):407–435CrossRefGoogle Scholar
  52. Rosengren R, Pamilo P, Cherix D (1986) Insular ecology of the red wood ant Formica truncorum Fabr. II. Distribution, reproductive strategy and competition. Ann Zool Fenn 59:63–94Google Scholar
  53. Rothstein SI (1982) Mechanisms of avian egg recognition: which egg parameters elicit responses by rejecter species? Behav Ecol Sociobiol 11(4):229–239CrossRefGoogle Scholar
  54. Rothstein SI (1990) A model system for coevolution: avian brood parasitism. Annu Rev Ecol Syst 21(1):481–508CrossRefGoogle Scholar
  55. Santschi F (1906) A propos de moeurs parasitiques temporaires des fourmis du genre Bothriomyrmex. Ann Soc Entomol Fr 75:363–392Google Scholar
  56. Savolainen R (1990) Colony success of the submissive ant Formica fusca within territories of the dominant Formica polyctena. Ecol Entomol 15(1):79–85CrossRefGoogle Scholar
  57. Savolainen R, Vepsäläinen K (1989) Niche differentiation of ant species within territories of the wood ant Formica polyctena. Oikos 56(1):3–16CrossRefGoogle Scholar
  58. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  59. Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra Verlags- und Vertriebsgesellschaft, Görlitz/TauerGoogle Scholar
  60. Sherman PW, Reeve HK, Pfennig DW (1997) Recognition systems. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Wiley–Blackwell, OxfordGoogle Scholar
  61. Snedecor GW, Cochran WG (1980) Statistical methods, 8th edn. Iowa State University Press, IowaGoogle Scholar
  62. Stuart RJ (1991) Nestmate recognition in leptothoracine ants: testing for effects of queen number, colony size and species of intruder. Anim Behav 42(2):277–284CrossRefGoogle Scholar
  63. Sundström L, Seppa P, Pamilo P (2005) Genetic population structure and dispersal patterns in Formica ants—a review. Ann Zool Fenn 42(3):163–177Google Scholar
  64. Thomas F, Renaud F, Guégan J-F (2005) Parasitism and ecosystems. Oxford University Press, OxfordCrossRefGoogle Scholar
  65. Thompson JN (2005) Coevolution: the geographic mosaic of coevolutionary arms races. Curr Biol 15(24):992–994Google Scholar
  66. Tschinkel WR, Adams ES, Macom T (1995) Territory area and colony size in the fire ant Solenopsis invicta. J Anim Ecol 64(4):473–480CrossRefGoogle Scholar
  67. Welbergen JA, Davies NB (2009) Strategic variation in mobbing as a front line of defense against brood parasitism. Curr Biol 19(3):235–240PubMedCrossRefGoogle Scholar
  68. Wilson EO (1971) Insect societies. The Belknap press of Harvard University Press, CambridgeGoogle Scholar
  69. Wojcik DP (1989) Behavioral interactions between ants and their parasites. Fla Entomol 72(1):43–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anton Chernenko
    • 1
  • Marta Vidal-Garcia
    • 1
  • Heikki Helanterä
    • 1
  • Liselotte Sundström
    • 1
  1. 1.Centre of Excellence in Biological interactions, Department of BiosciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations