Behavioral Ecology and Sociobiology

, Volume 65, Issue 7, pp 1483–1489 | Cite as

Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil

  • Takashi Kuriwada
  • Norikuni Kumano
  • Keiko Shiromoto
  • Dai Haraguchi
Original Paper

Abstract

Inadvertent selection is an important genetic process that frequently occurs during laboratory culture. The mass-reared strain of the sweet potato weevil Cylas formicarius exhibits stronger inbreeding depression than the wild strain does. When inbreeding depression occurs in a population, mating with a close relative is often considered maladaptive; however, in some contexts, the inclusive fitness benefits of inbreeding may outweigh the costs, favoring individuals that tolerate a low level of inbreeding depression. Theory predicts that mass-reared strain weevils will avoid inbreeding while wild strain weevils will tolerate inbreeding. To examine this prediction, we compared the effect of relatedness on the mating and insemination successes in mass-reared and wild strains of C. formicarius. While close relative pairs of the wild strain copulated less frequently than non-kin pairs, almost all mass-reared strain pairs copulated irrespective of relatedness. The results showed that the strain with weak inbreeding depression (wild strain) avoided inbreeding, whereas the strain with strong inbreeding depression (mass-reared strain) tolerated inbreeding. The contradiction between the theoretical prediction and our results is discussed from the perspective of laboratory adaptation, mating systems, and life history of C. formicarius.

Keywords

Relatedness Domestication Coleoptera Laboratory adaptation Sexual selection 

References

  1. Ala-Honkola O, Uddström A, Diaz Pauli A, Lindström K (2009) Strong inbreeding depression in male mating behaviour in a poeciliid fish. J Evol Biol 22:1396–1406. doi:10.1111/j.1420-9101.2009.01765.x PubMedCrossRefGoogle Scholar
  2. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008 PubMedCrossRefGoogle Scholar
  3. Cohen LB, Dearborn DC (2004) Great frigatebirds, Fregata minor, choose mates that are genetically similar. Anim Behav 68:1229–1236. doi:10.1016/j.anbehav.2003.12.021 CrossRefGoogle Scholar
  4. Crawley MJ (2005) Statistics: an introduction using R. Wiley, West SussexGoogle Scholar
  5. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270. doi:10.1038/sj.hdy.6885530 PubMedCrossRefGoogle Scholar
  6. Danielsson I (2001) Antagonistic pre- and post-copulatory selection on male body size in a water strider (Gerris lacustris). Proc R Soc Lond B 266:1041–1047. doi:10.1098/rspb.2000.1332 Google Scholar
  7. De Luca PA, Cocroft RB (2008) The effects of age and relatedness on mating patterns in thornbug treehoppers: inbreeding avoidance or inbreeding tolerance? Behav Ecol Sociobiol 62:1869–1875. doi:10.1007/s00265-008-0616-2 CrossRefGoogle Scholar
  8. R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  9. Dyck VA, Hendrichs J, Robinson AS (2005) Sterile insect technique, principles and practice in area-wide integrated pest management. Springer, DordrechtGoogle Scholar
  10. Eberhardt WG (1996) Female control: sexual selection by cryptic female choice. Princeton University Press, PrincetonGoogle Scholar
  11. Frankham R (2008) Genetic adaptation to captivity in species conservation programs. Mol Ecol 17:325–333. doi:10.1111/j.1365-294X.2007.03399.x PubMedCrossRefGoogle Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  13. Grafen A (1990) Do animals really recognize kin? Anim Behav 39:42–54. doi:10.1016/S0003-3472(05)80724-9 CrossRefGoogle Scholar
  14. Heath RR, Coffelt JA, Sonnet PE, Proshold FI, Dueben B, Tumlinson JH (1986) Identification of sex pheromone produced by female sweetpotato weevil, Cylas formicarius elegantulus (Summers). J Chem Ecol 12:1489–1503. doi:10.1007/BF01012367 CrossRefGoogle Scholar
  15. Jamieson IG, Taylor SS, Tracy LN, Kokko H, Armstrong DP (2009) Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks. Behav Ecol 20:575–584. doi:10.1093/beheco/arp034 CrossRefGoogle Scholar
  16. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241. doi:10.1016/S0169-5347(02)02489-8 CrossRefGoogle Scholar
  17. Kokko H, Ots I (2006) When not to avoid inbreeding. Evolution 60:467–475. doi:10.1554/05-613.1 PubMedGoogle Scholar
  18. Kuriwada T, Kumano N, Shiromoto K, Haraguchi D (2009) Copulation reduces the duration of death-feigning behaviour in the sweetpotato weevil, Cylas formicarius. Anim Behav 78:1145–1151. doi:10.1016/j.anbehav.2009.07.031 CrossRefGoogle Scholar
  19. Kuriwada T, Kumano N, Shiromoto K, Haraguchi D (2010) The effect of mass-rearing on life history traits and inbreeding depression in the sweetpotato weevil Cylas formicarius elegantulus (Coleoptera: Brentidae). J Econ Entomol 103:1144–1148. doi:10.1603/EC09361 PubMedCrossRefGoogle Scholar
  20. Lacy RC, Sherman PW (1983) Kin recognition by phenotype matching. Am Nat 121:489–512. doi:10.1086/284078 CrossRefGoogle Scholar
  21. Le Galliard JF, Ferrière R (2008) The adaptive evolution of social traits. In: Danchin E, Giraldeau LA, Cézilly F (eds) Behavioural ecology. Oxford University Press, Oxford, pp 547–575Google Scholar
  22. Lehmann L, Perrin N (2003) Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am Nat 162:638–652. doi:10.1086/378823 PubMedCrossRefGoogle Scholar
  23. Miyatake T, Moriya S, Kohama T, Shimoji Y (1997) Dispersal potential of male Cylas formicarius (Coleoptera: Brentidae) over land and water. Environ Entomol 26:272–276Google Scholar
  24. Thurin N, Aron S (2009) Sib-mating in the ant Plagiolepis pygmaea: adaptative inbreeding? J Evol Biol 22:2481–2487. doi:10.1111/j.1420-9101.2009.01864.x PubMedCrossRefGoogle Scholar
  25. Olsson M, Shine R, Madsen T, Gullberg A, Tegelström H (1996) Sperm selection by females. Nature 383:585. doi:10.1038/383585a0 CrossRefGoogle Scholar
  26. Oosterhout CV, Trigg RE (2003) Inbreeding depression and genetic load of sexually selected traits: how the guppy lost its spots. J Evol Biol 16:273–281. doi:10.1046/j.1420-9101.2003.00511.x PubMedCrossRefGoogle Scholar
  27. Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, London, pp 123–166Google Scholar
  28. Parker GA (2006) Sexual conflict over mating and fertilization: an overview. Philos Trans R Soc Lond B Biol Sci 361:235–259. doi:10.1098/rstb.2005.1785 PubMedCrossRefGoogle Scholar
  29. Pizzari TH, Løvlie H, Cornwallis CK (2004) Sex-specific, counteracting responses to inbreeding in a bird. Proc Bio Sci 271:2115–2121. doi:10.1098/rspb.2004.2843 CrossRefGoogle Scholar
  30. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206. doi:10.1016/0169-5347(96)10028-8 PubMedCrossRefGoogle Scholar
  31. Roff DA (2002) Life history evolution. Sinauer, Sunderland, MAGoogle Scholar
  32. Sakurai G, Kasuya E (2008) The costs of harassment in the adzuki bean beetle. Anim Behav 75:1367–1373. doi:10.1016/j.anbehav.2007.09.010 CrossRefGoogle Scholar
  33. Schjørring S, Jäger I (2007) Incestuous mate preference by a simultaneous hermaphrodite with strong inbreeding depression. Evolution 61:423–430. doi:10.1111/j.1558-5646.2007.00028.x PubMedCrossRefGoogle Scholar
  34. Sgrò CM, Partridge L (2000) Evolutionary responses of the life history of wild-caught Drosophila melanogaster to two standard methods of laboratory culture. Am Nat 156:341–353CrossRefGoogle Scholar
  35. Simmons LW (2001) Sperm competition and its evolutionary consequences in the insects. Princeton University Press, PrincetonGoogle Scholar
  36. Simmons LW, Thomas ML (2008) No postcopulatory response to inbreeding by male crickets. Biol Lett 4:183–185. doi:10.1098/rsbl.2007.0578 PubMedCrossRefGoogle Scholar
  37. Simões P, Rose MR, Duarte A, Gonçalves R, Matos M (2007) Evolutionary domestication in Drosophila subobscura. J Evol Biol 20:758–766. doi:10.1111/j.1420-9101.2006.01244.x PubMedCrossRefGoogle Scholar
  38. Stearns SC (1992) The evolution of life histories. Oxford University Press, New YorkGoogle Scholar
  39. Sugimoto T, Sakuratani Y, Fukui H, Kiritani K, Okada T (1996) Estimating the reproductive properties of the sweet potato weevil, Cylas formicarius (Fabricius) (Coleoptera, Brentidae). Appl Entomol Zool 31:357–367Google Scholar
  40. Thornhill R (1983) Cryptic female choice and its implications in the scorpionfly Harpobittacus nigriceps. Am Nat 122:765–788. doi:10.1086/284170 CrossRefGoogle Scholar
  41. Thornhill R, Alcock J (1983) The evolution of insect mating systems. Harvard University Press, CambridgeGoogle Scholar
  42. Thünken T, Bakker TCM, Baldauf SA, Kullmann H (2007) Active inbreeding in a cichlid fish and its adaptive significance. Curr Biol 17:225–229. doi:10.1016/j.cub.2006.11.053 PubMedCrossRefGoogle Scholar
  43. Tregenza T, Wedell N (2002) Polyandrous females avoid costs of inbreeding. Nature 415:71–73. doi:10.1038/415071a PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Takashi Kuriwada
    • 1
    • 2
  • Norikuni Kumano
    • 1
    • 2
  • Keiko Shiromoto
    • 1
    • 2
  • Dai Haraguchi
    • 1
  1. 1.Okinawa Prefectural Plant Protection CenterNahaJapan
  2. 2.Ryukyu Sankei Co. LtdTomigusukuJapan

Personalised recommendations