Behavioral Ecology and Sociobiology

, Volume 64, Issue 11, pp 1725–1732 | Cite as

Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe

  • Jannika E. Boström
  • Thord Fransson
  • Ian Henshaw
  • Sven Jakobsson
  • Cecilia Kullberg
  • Susanne Åkesson
Original Paper

Abstract

Recent experiments exposing migratory birds to altered magnetic fields simulating geographical displacements have shown that the geomagnetic field acts as an external cue affecting migratory fuelling behaviour. This is the first study investigating fuel deposition in relation to geomagnetic cues in long-distance migrants using the western passage of the Mediterranean region. Juvenile wheatears (Oenanthe oenanthe) were exposed to a magnetically simulated autumn migration from southern Sweden to West Africa. Birds displaced parallel to the west of their natural migration route, simulating an unnatural flight over the Atlantic Ocean, increased their fuel deposition compared to birds experiencing a simulated migration along the natural route. These birds, on the other hand, showed relatively low fuel loads in agreement with earlier data on wheatears trapped during stopover. The experimental displacement to the west, corresponding to novel sites in the Atlantic Ocean, led to a simulated longer distance to the wintering area, probably explaining the observed larger fuel loads. Our data verify previous results suggesting that migratory birds use geomagnetic cues for fuelling decisions and, for the first time, show that birds, on their first migration, can use geomagnetic cues to compensate for a displacement outside their normal migratory route, by adjusting fuel deposition.

Keywords

Bird migration Migration programmes Fuelling Magnetic displacement Wheatear Geomagnetic cues 

Notes

Acknowledgements

We are grateful to Christoffer Sjöholm and the personnel at Ottenby Bird Observatory for assistance during capture of the experimental birds and to Heiko Schmaljohann and an anonymous referee for valuable comments on an earlier version of this manuscript. Financial support was received from the Swedish Research Council (to S.Å. and to C.K.). This is report no. 240 from Ottenby Bird Observatory. This is a report from the Centre for Animal Movement Research (CAnMove), with financial support from the Swedish Research Council and Lund University.

The study was carried out with permission from the Swedish Animal Welfare Agency (Linköpings djurförsöksetiska nämnd: permission no. 41-07). The authors declare that they have no conflict of interest.

References

  1. Able KP (1980) Mechanisms of orientation, navigation and homing. In: Gauthreaux S (ed) Animal migration, orientation and navigation. Academic, New York, pp 283–373Google Scholar
  2. Åkesson S (1993) Effect of geomagnetic field on orientation of the marsh warbler, Acrocephalus palustris, in Sweden and Kenya. Anim Behav 46:1157–1167. doi: 10.1006/anbe.1993.1305 CrossRefGoogle Scholar
  3. Åkesson S, Alerstam T (1998) Oceanic navigation: are there any feasible geomagnetic bi-coordinate combinations for albatrosses? J Avian Biol 29:618–625CrossRefGoogle Scholar
  4. Åkesson S, Bäckman J (1999) Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Anim Behav 57:819–828. doi: 10.1006/anbe.1998.1040 CrossRefPubMedGoogle Scholar
  5. Åkesson S, Hedenström A (2007) How migrants get there: migratory performance and orientation. Bioscience 57:123–133. doi: 10.1641/B570207 CrossRefGoogle Scholar
  6. Åkesson S, Morin J, Muheim R, Ottosson U (2005) Dramatic orientation shift of displaced birds in response to the geomagnetic field. Curr Biol 15:1591–1597. doi: 10.1016/j.cub.2005.07.027 CrossRefPubMedGoogle Scholar
  7. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  8. Alerstam T, Hedenström A, Åkesson S (2003) Long-distance migration: evolution and determinants. Oikos 103:247–260. doi: 10.1034/j.1600-0706.2003.12559.x CrossRefGoogle Scholar
  9. Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351Google Scholar
  10. Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10. doi: 10.1007/s00114-001-0279-6 CrossRefPubMedGoogle Scholar
  11. Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of pied flycatchers. In: Ouellet H (ed) Acta XIX Congress of International Ornithology. University of Ottawa Press, Ottawa, pp 1955–1962Google Scholar
  12. Berthold P (1993) Bird migration. A general survey. Oxford University Press, OxfordGoogle Scholar
  13. Berthold P (1996) Control of bird migration. Chapman & Hall, LondonGoogle Scholar
  14. Blem CR (1980) The energetics of migration. In: Gautreaux SA Jr (ed) Animal migration, orientation and navigation. Academic, Toronto, pp 125–218Google Scholar
  15. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63. doi: 10.1038/nature01226 CrossRefPubMedGoogle Scholar
  16. Dawson WR, Yacoe ME, Marsh RL (1983) Metabolic adjustments of small birds for migration and cold. Amer J Physiol 245:755–767Google Scholar
  17. Delingat J, Bairlein F, Hedenström A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern Wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078. doi: 10.1007/s00265-007-0534-8 CrossRefGoogle Scholar
  18. Delingat J, Dierschke V, Schmaljohann H, Mendel B, Bairlein F (2006) Daily stopovers as optimal migration strategy in a long-distance migrating passerine: the Northern Wheatear Oenanthe oenanthe. Ardea 94:593–605Google Scholar
  19. Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480CrossRefGoogle Scholar
  20. Emlen ST (1975) Migration: orientation and navigation. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic, New York, pp 129–219Google Scholar
  21. Fischer JH, Munro U, Phillips JB (2003) Magnetic navigation by an avian migrant. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Heidelberg, pp 423–432Google Scholar
  22. Fransson T, Barboutis C, Mellroth R, Akriotis T (2008) When and where to fuel before crossing the Sahara desert—extended stopover and migratory fuelling in first-year garden warblers Sylvia borin. J Avian Biol 39:133–138. doi: 10.1111/j.0908-8857.2008.04361.x CrossRefGoogle Scholar
  23. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36. doi: 10.1038/35102115 CrossRefPubMedGoogle Scholar
  24. Fry CH, Ash JS, Ferguson-Lees IJ (1970) Spring weights of some Palaearctic migrants at Lake Chad. Ibis 112:58–82CrossRefGoogle Scholar
  25. Gill RE, Tibbitts TL, Douglas DC, Handel CM, Mulcahy DM, Gottschalck JC, Warnock N, McCaffery BJ, Battley PF, Piersma T (2009) Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proc R Soc B 276:447–458. doi: 10.1098/rspb.2008.1142 CrossRefPubMedGoogle Scholar
  26. Gwinner E (1986) Circannual rhythms. Springer, BerlinGoogle Scholar
  27. Gwinner E (1990) Circannual rhythms in bird migration: control of temporal patterns and interactions with photoperiod. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 257–268Google Scholar
  28. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  29. Henshaw I, Fransson T, Jakobsson S, Lind J, Vallin A, Kullberg C (2008) Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J Exp Biol 211:649–653. doi: 10.1242/jeb.014183 CrossRefPubMedGoogle Scholar
  30. Jenni L, Schaub M (2003) Behavioural and physiological reactions to environmental variation in bird migration: a review. In: Berthold E, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Heidelberg, pp 155–171Google Scholar
  31. Kersten M, Bruinzeel LW, Wiersma P, Piersma T (1998) Reduced basal metabolic rate of migratory waders wintering in coastal Africa. Ardea 86:71–80Google Scholar
  32. Kullberg C, Fransson T, Jakobsson S (1996) Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc R Soc B 263:1671–1675. doi: 10.1098/rspb.1996.0244 CrossRefGoogle Scholar
  33. Kullberg C, Henshaw I, Jakobsson S, Johansson P, Fransson T (2007) Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc R Soc B 274:2145–2151. doi: 10.1098/rspb.2007.0554 CrossRefPubMedGoogle Scholar
  34. Kullberg C, Jakobsson S, Fransson T (2000) High migratory fuel loads impair predator evasion in sedge warblers. Auk 117:1034–1038. doi: 10.1642/0004-8038(2000)117 CrossRefGoogle Scholar
  35. Kullberg C, Lind J, Fransson T, Jakobsson S, Vallin A (2003) Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc R Soc B 270:373–378. doi: 10.1098/rspb.2002.2273 CrossRefPubMedGoogle Scholar
  36. Kvist A, Lindström Å (2001) Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation. Funct Ecol 15:465–473. doi: 10.1046/j.0269-8463.2001.00549.x CrossRefGoogle Scholar
  37. Lind J, Fransson T, Jakobsson S, Kullberg C (1999) Reduced take-off ability in robins (Erithacus rubecula) due to migratory fuel load. Behav Ecol Sociobiol 46:65–70. doi: 10.1007/s002650050593 CrossRefGoogle Scholar
  38. Lindström Å, Klaassen M (2003) High basal metabolic rates of shorebirds while in the arctic: a circumpolar view. Condor 105:420–427CrossRefGoogle Scholar
  39. Lohmann KJ, Cain SD, Lohmann CMF (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366. doi: 10.1126/science.1064557 CrossRefPubMedGoogle Scholar
  40. Muheim R, Moore FR, Phillips JB (2005) Calibration of magnetic and celestial compass cues of migratory birds—a review of cue conflict experiments. J Exp Biol 209:2–17. doi: 10.1242/jeb.01960 CrossRefGoogle Scholar
  41. Ottosson U, Sandberg R, Pettersson J (1990) Orientation cage and release experiments with migratory wheatears (Oenanthe oenanthe) in Scandinavia and Greenland: the importance of visual cues. Ethology 86:57–70CrossRefGoogle Scholar
  42. Phillips JB (1996) Magnetic navigation. J Theor Biol 180:309–319. doi: 10.1006/jtbi.1996.0105 CrossRefGoogle Scholar
  43. Rabøl J (1978) One direction orientation versus goal area navigation in migratory birds. Oikos 30:216–223CrossRefGoogle Scholar
  44. Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138. doi: 10.1111/j.1365-2656.2004.00905.x CrossRefGoogle Scholar
  45. Skiles DD (1985) The geomagnetic field; its nature, history and biological relevance. In: Kirschvink JL, Jones DS, McFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, pp 43–102Google Scholar
  46. Waldenström J, Hjort C, Andersson A (2006) Autumn migration of some passerines on the island of Capri, southwestern Italy. Ornis Svec 16:42–54Google Scholar
  47. Wallraff HG (1990) Conceptual approaches to avian navigation systems. In: Berthold P (ed) Orientation in birds. Birkhäuser, Basel, pp 128–165Google Scholar
  48. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jannika E. Boström
    • 1
  • Thord Fransson
    • 2
  • Ian Henshaw
    • 3
  • Sven Jakobsson
    • 4
  • Cecilia Kullberg
    • 4
  • Susanne Åkesson
    • 1
  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.Swedish Museum of Natural HistoryBird Ringing CentreStockholmSweden
  3. 3.Department of Physics and Materials ScienceUppsala UniversityUppsalaSweden
  4. 4.Department of ZoologyStockholm UniversityStockholmSweden

Personalised recommendations