Behavioral Ecology and Sociobiology

, Volume 64, Issue 9, pp 1415–1423 | Cite as

Terpenoids tame aggressors: role of chemicals in stingless bee communal nesting

  • Sara D. Leonhardt
  • Linda-Maria Jung
  • Thomas Schmitt
  • Nico BlüthgenEmail author
Original Paper


Social insects aggressively defend their nest and surrounding against non-nestmates, which they recognize by an unfamiliar profile of aliphatic hydrocarbons on the cuticle. Prominent exceptions are communal nest aggregations of stingless bees. Stingless bees (Apidae: Meliponini) are also unique in possessing cuticular terpenes which are derived from tree resins and have not yet been reported for any other insect. We showed experimentally that sesquiterpenes from the body surface of the communal nesting bee Tetragonilla collina reduced aggression in otherwise aggressive bees which did not have sesquiterpenes themselves. In the field, bee species nesting in aggregations with T. collina often lack sesquiterpenes in their own cuticular profiles. These species show little aggression towards T. collina, whereas it can be heavily attacked by non-aggregated species that also possess cuticular sesquiterpenes. We conclude that appeasement by sesquiterpenes represents a novel mechanism to achieve interspecific tolerance in social insects.


Stingless bees Meliponini Aggression Terpenes Chemical profile Communal nesting 



We thank the Royal Society as well as the staff from DVC and KSR for their support, and the Economic Planning Unit (EPU) for giving us permission to perform research in Malaysia. Chey Vun Khen, Robert Ong, and Arthur Chung (Forestry Research Centre, Sandakan) kindly supported this project. We further thank Andreas Brandstätter for helpful comments. SDL was supported by a grant of the German Excellence Initiative to the Graduate School of Life Science, University of Würzburg, LMJ by a travel grant of the German Academic Exchange Program (DAAD), and TS and NB by the Sonderforschungsbereich SFB 554 (Mechanisms and Evolution of Arthropod Behavior) of the Deutsche Forschungsgemeinschaft (DFG).


  1. Abdalla FC, Jones GR, Morgan ED, Da Cruz-Landim C (2003) Comparative study of the cuticular hydrocarbon composition of Melipona bicolor Lepeletier, 1836 (Hymenoptera, Meliponini) workers and queens. Genet Molec Res 2:191–199Google Scholar
  2. Ayasse M, Engels W, Lübke G, Taghizadeh T, Francke W (1999) Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera: Halictidae). Behav Ecol Sociobiol 45:95–106CrossRefGoogle Scholar
  3. Bagnères AG, Clement JL, Blum MS, Severson RF, Joulie C, Lange C (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud)—polymorphism and chemotaxonomy. J Chem Ecol 16:3213–3244CrossRefGoogle Scholar
  4. Beggs KT, Glendining KA, Marechal NM, Vergoz V, Nakamura I, Slessor KN, Mercer AR (2007) Queen pheromone modulates brain dopamine function in worker honey bees. Proc Natl Acad Sci USA 104:2460–2464CrossRefPubMedGoogle Scholar
  5. Blum MS (1966) Chemical releasers of social behavior—VIII. Citral in the mandibular gland secretion of Lestrimelitta limao (Hymenoptera: Apoidea: Melittidae). Ann Entomol Soc 59:962–964Google Scholar
  6. Blum MS, Brand JM (1972) Social insect pheromones: their chemistry and function. Am Zool 12:553–576Google Scholar
  7. Blum MS, Crewe RM, Kerr WE, Keith LH, Garrison AW, Walker MM (1970) Citral in stingless bees: isolation and functions in trail-laying and robbing. J Insect Physiol 16:1637–1648CrossRefPubMedGoogle Scholar
  8. Breed MD, Stiller TM (1992) Honey bee, Apis mellifera, nestmate discrimination—hydrocarbon effects and the evolutionary implications of comb choice. Anim Behav 43:875–883Google Scholar
  9. Buckner JL (1993) Cuticular polar lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 227–270Google Scholar
  10. Cameron EC, Franck P, Oldroyd BP (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Mol Ecol 13:2357–2364CrossRefPubMedGoogle Scholar
  11. Cane JH (1986) Predator deterrence by mandibular gland secretions of bees (Hymenoptera, Apoidea). J Chem Ecol 12:1295–1309CrossRefGoogle Scholar
  12. Cervo R, Dani FR, Cotoneschi C, Scala C, Lotti I, Strassmann JE, Queller DC, Turillazzi S (2008) Why are larvae of the social parasite wasp Polistes sulcifer not removed from the host nest? Behav Ecol Sociobiol 62:1319–1331CrossRefGoogle Scholar
  13. Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286CrossRefGoogle Scholar
  14. Couvillon MJ, Ratnieks FLW (2009) Odour transfer in stingless bee marmelada (Frieseomelitta varia) demonstrates that entrance guards use an "undesirable-absent" recognition system. Behav Ecol Sociobiol 62:1099–1105CrossRefGoogle Scholar
  15. Crozier RH, Dix MW (1979) Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav Ecol Sociobiol 4:217–224CrossRefGoogle Scholar
  16. Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Oxford University Press, OxfordGoogle Scholar
  17. Cruz-Lopez L, Patricio E, Morgan ED (2001) Secretions of stingless bees: the Dufour gland of Nannotrigona testaceicornis. J Chem Ecol 27:69–80CrossRefPubMedGoogle Scholar
  18. Cruz-Lopez L, Malo EA, Morgan ED, Rincon M, Guzman M, Rojas JC (2005) Mandibular gland secretion of Melipona beecheii: chemistry and behavior. J Chem Ecol 31:1621–1632CrossRefPubMedGoogle Scholar
  19. Dworschak K, Blüthgen N (2010) Networks and dominance hierarchies: does interspecific aggression explain flower partitioning among stingless bees? Ecol Entomol 35:216–225Google Scholar
  20. Eisner T, Johnesse J, Carrel J, Hendry LB, Meinwald J (1974) Defensive use by an insect of a plant resin. Sci 184:996–999CrossRefGoogle Scholar
  21. Eltz T (2004) Spatio-temporal variation of apine bee attraction to honeybaits in Bornean forests. J Trop Ecol 20:317–324CrossRefGoogle Scholar
  22. Eltz T, Brühl CA, Zamrie I, Linsenmair KE (2001) Nesting and nest trees of stingless bees (Apidae: Meliponini) in lowland dipterocarp forests in Sabah, Malaysia, with implications for forest management. For Ecol Manage 5833:1–13Google Scholar
  23. Eltz T, Brühl CA, Kaars SVD, Linsenmair KE (2002) Determinants of stingless bee nest density in lowland dipterocarp forests of Sabah, Malaysia. Oecologia 131:27–34CrossRefGoogle Scholar
  24. Fox JD (1973) A Handbook to Kabili–Sepilok Forest Reserve, Sabah Forest Department, Sandakan, MalaysiaGoogle Scholar
  25. Francke W, Lübke G, Schröder W, Reckziegel A, Imperatriz-Fonseca A, Kleinert A, Hartfelder K, Radtke R, Engels W (2000) Identification of oxygen containing volatiles in cephalic secretions of workers of Brazilian stingless bees. J Braz Chem Soc 11:562–571CrossRefGoogle Scholar
  26. Fröhlich B, Tautz J, Riederer M (2000) Chemometric classification of comb and cuticular waxes of the honeybee Apis mellifera carnica. J Chem Ecol 26:123–137CrossRefGoogle Scholar
  27. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414CrossRefPubMedGoogle Scholar
  28. Getz WM, Chapman RF (1987) An odor discrimination model with application to kin recognition in social insects. Int J Neurosci 32:963–978CrossRefPubMedGoogle Scholar
  29. Gloag RS, Oldroyd BP, Heard TA, Beekman M (2008) Nest defence in a stingless bee: what causes fighting swarms in Trigona carbonaria (Hymenoptera, Meliponini)? Insect Soc 55:387–391CrossRefGoogle Scholar
  30. Guerrieri FJ, Nehring V, Jorgensen CG, Nielsen J, Galizia CG, d’Ettorre P (2009) Ants recognize foes and not friends. Proc R Soc Lond B 276:2461–2468CrossRefGoogle Scholar
  31. Hauber ME, Sherman PW (2001) Self-referent phenotype matching: theoretical considerations and empirical evidence. Trends Neurosci 24:609–616CrossRefPubMedGoogle Scholar
  32. Hölldobler B (1995) The chemistry of social regulation—multicomponent signals in ant societies. Proc Natl Acad Sci USA 92:19–22CrossRefPubMedGoogle Scholar
  33. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  34. Hölldobler B, Wilson EO (2009) The superorganism. Norton, New YorkGoogle Scholar
  35. Howard RW (1993) Cuticular hydrocarbons and chemical communication. In: Stanley-Samuelson DW, Nelson DR (eds) Insects lipids: chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 179–226Google Scholar
  36. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393CrossRefPubMedGoogle Scholar
  37. Howard RW, Perez-Lachaud G, Lachaud JP (2001) Cuticular hydrocarbons of Kapala sulcifacies (Hymenoptera: Eucharitidae) and its host, the ponerine ant Ectatomma ruidum (Hymenoptera: Formicidae). Ann Entomol Soc 94:707–716CrossRefGoogle Scholar
  38. Hubbell SP, Johnson LK (1977) Competition and nest spacing in a tropical stingless bee community. Ecol 58:949–963CrossRefGoogle Scholar
  39. Inoue T, Nagamitsu T, Momose K, Sakagami SF, Hamid AA (1994) Stingless bees in Sarawak. In: Inoue T, Hamid AA (eds) Plant reproductive systems and animal seasonal dynamics: long-term study of dipterocarp forests in Sarawak. Report of Monbusho International Scientific Research. Center for Ecological Research, Kyoto University, Otsu, pp 231–237Google Scholar
  40. Jungnickel H, da Costa AJS, Tentschert J, Patricio E, Imperatriz-Fonseca VL, Drijfhout F, Morgan ED (2004) Chemical basis for inter-colonial aggression in the stingless bee Scaptotrigona bipunctata (Hymenoptera: Apidae). J Insect Physiol 50:761–766CrossRefPubMedGoogle Scholar
  41. Kerr WE, Jungnickel H, Morgan ED (2004) Workers of the stingless bee Melipona scutellaris are more similar to males than to queens in their cuticular compounds. Apidologie 35:611–618CrossRefGoogle Scholar
  42. Lacy RC, Sherman PW (1983) Kin recognition by phenotype matching. Am Nat 121:489–512CrossRefGoogle Scholar
  43. Lehmberg L, Dworschak K, Blüthgen N (2008) Defensive behavior and chemical deterrence against ants in the stingless bee genus Trigona (Apidae, Meliponini). J Apic Res 47:17–21Google Scholar
  44. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599CrossRefPubMedGoogle Scholar
  45. Leonhardt SD, Blüthgen N (2009) A sticky affair: resin collection by Bornean stingless bees. Biotropica 41:730–736CrossRefGoogle Scholar
  46. Leonhardt SD, Blüthgen N, Schmitt T (2009) Smelling like resin: terpenoids account for species-specific cuticular profiles in Southeast-Asian stingless bees. Insect Soc 56:157–170CrossRefGoogle Scholar
  47. Mant J, Brändli C, Vereecken NJ, Schulz CM, Francke W, Schiestl FP (2005) Cuticular hydrocarbons as sex pheromone of the bee Colletes cunicularius and the key to its mimicry by the sexually deceptive orchid, Ophrys exaltata. J Chem Ecol 31:1765–1787CrossRefPubMedGoogle Scholar
  48. Marsh CW, Greer AG (1992) Forest land-use in Sabah, Malaysia: an introduction to Danum Valley. Philosoph Trans R Soc Lond B 335:331–339CrossRefGoogle Scholar
  49. Martin SJ, Vitikainen E, Helanterä H, Drijfhout FP (2008) Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc R Soc Lond B 275:1271–1278CrossRefGoogle Scholar
  50. Menzel F, Linsenmair KE, Blüthgen N (2008) Selective interspecific tolerance in tropical CrematogasterCamponotus associations. Anim Behav 75:837–846CrossRefGoogle Scholar
  51. Messer AC (1985) Fresh dipterocarp resins gathered by megachilid bees inhibit growth of pollen-associated fungi. Biotropica 17:175–176CrossRefGoogle Scholar
  52. Michener CD (1974) The social behavior of the bees. Harvard University Press, HarvardGoogle Scholar
  53. Morgan ED, Jungnickel H, Keegans SJ, Do Nascimento RR, Billen J, Gobin B, Ito F (2003) Comparative survey of abdominal gland secretions of the ant subfamily Ponerinae. J Chem Ecol 29:95–114CrossRefPubMedGoogle Scholar
  54. Mori A, Visicchio R, Sledge MF, Grasso DA, Le Moli F, Turillazzi S, Spencer S, Jones GR (2000) Behavioural assays testing the appeasement allomone of Polyergus rufescens queens during host-colony usurpation. Ethol Ecol Evol 12:215–322Google Scholar
  55. Moure JS (1961) A preliminary supra-specific classification of the old world meliponine bees (Hymenoptera, Apoidea). Stud Entomol 4:181–242Google Scholar
  56. Nagamitsu T, Inoue T (1997) Aggressive foraging of social bees as a mechanism of floral resource partitioning in an Asian tropical rainforest. Oecologia 110:432–439CrossRefGoogle Scholar
  57. Nunes TM, Nascimento FS, Turatti IC, Lopes NP, Zucchi R (2008) Nestmate recognition in a stingless bee: does the similarity of chemical cues determine guard acceptance? Anim Behav 75:1165–1171CrossRefGoogle Scholar
  58. Patricio E, Lopez LC, Maile R, Morgan ED (2003) Secretions of stingless bees: the Dufour glands of some Frieseomelitta species (Apidae, Meliponinae). Apidologie 34:359–365CrossRefGoogle Scholar
  59. Paulmier I, Bagnères AG, Afonso CMM, Dusticier G, Riviere G, Clément JL (1999) Alkenes as a sexual pheromone in the alfalfa leaf-cutter bee Megachile rotundata. J Chem Ecol 25:471–490CrossRefGoogle Scholar
  60. R Development Core Team (2009) R: A language and environment for statistical computing, ISBN 3-900051-07-0, URL In. R Foundation for Statistical Computing, Vienna, Austria
  61. Roubik DW (1979) Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera, Apidae). J Kans Entomol Soc 52:443–470Google Scholar
  62. Roubik DW (1983) Nest and colony characteristics of stingless bees from Panama (Hymenoptera, Apidae). J Kans Entomol Soc 56:327–355Google Scholar
  63. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New YorkCrossRefGoogle Scholar
  64. Roubik DW (1996) Wild bees of Brunei Darussalam. In: Edwards DS, Booth WE, Choy SC (eds) Tropical rainforest research—current issues: Proceedings of the Conference Held in Bandar Seri Begawan, April 1993. Kluwer, Bandar Seri Begawan, p 566Google Scholar
  65. Sakai S, Momose K, Inoue T, Hamid AA (1997) Climate data in Lambir Hills National Park and Miri Airport, Sarawak. In: Inoue T, Hamid AA (eds) General flowering of tropical rainforest in Sarawak. Center for Ecological Research, Kyoto University, pp 1–10Google Scholar
  66. Salmah S, Inoue T, Sakagami SF (1990) An analysis of apid bee richness (Apidae) in central Sumatra. In: Ohgushi R, Sakagami SF, Roubik DW (eds) Natural history of social wasps and bees in equatorial Sumatra. Hokkaido University Press, Sapporo, pp 139–174Google Scholar
  67. Souza B, Roubik D, Barth O, Heard T, Enriquez E, Carvalho C, Villas-Boas J, Marchini L, Locatelli J, Persano-Oddo L, Almeida-Muradian L, Bogdanov S, Vit P (2006) Composition of stingless bee honey: setting quality standards. Interciencia 31:867–875Google Scholar
  68. Starr CK, Sakagami SF (1987) An extraordinary concentration of stingless bee colonies in the Philippines, with notes on nest structure (Hymenoptera: Apidae: Trigona spp.). Insect Soc 34:96–107CrossRefGoogle Scholar
  69. Strohm E, Kroiss J, Herzner G, Laurien-Kehnen C, Boland W, Schreier P, Schmitt T (2008) A cuckoo in wolves’ clothing? Chemical mimicry in a specialized cuckoo wasp of the European beewolf (Hymenoptera, Chrysididae and Crabronidae). Front Zool 5:2Google Scholar
  70. Temeles EJ (1994) The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim Behav 47:339–350CrossRefGoogle Scholar
  71. Vander Meer RK, Morel L (1998) Nestmate recognition in ants. In: Vander Meer RK, Winston M, Espelie KE (eds) Pheromone communication in social insects. Westview, Boulder, pp 79–103Google Scholar
  72. Vergoz V, Schreurs HA, Mercer AR (2007) Queen pheromone blocks aversive learning in young worker bees. Sci 317:384–386CrossRefGoogle Scholar
  73. Visicchio R, Sledge MF, Mori A, Grasso DA, Le Moli F, Turillazzi S, Moneti G, Spencer S, Jones GR (2000) Dufour’s gland contents of queens of the slave-making ant Polyergus rufescens and its host species Formica cunicularia. Ethol Ecol Evol 12:67–73Google Scholar
  74. Wheeler JW, Blum MS, Daly HV, Kislow CJ, Brand JM (1977) Chemistry of mandibular gland secretions of small Carpenter bees (Ceratina spp) (Hymenoptera–Anthophoridae). Ann Entomol Soc 70:635–636Google Scholar
  75. Wille A (1983) Biology of the stingless bee. Annu Rev Entomol 28:41–46CrossRefGoogle Scholar
  76. Wilson EO (1971) The insect societies. Belknap Press of the Harvard University Press, CambridgeGoogle Scholar
  77. Wood MJ, Ratnieks FLW (2004) Olfactory cues and Vespula wasp recognition by honey bee guards. Apidologie 35:461–468CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sara D. Leonhardt
    • 1
  • Linda-Maria Jung
    • 1
  • Thomas Schmitt
    • 2
  • Nico Blüthgen
    • 1
    Email author
  1. 1.Department of Animal Ecology and Tropical BiologyUniversity of WürzburgWürzburgGermany
  2. 2.Department of Evolutionary Biology and Animal EcologyUniversity of FreiburgFreiburgGermany

Personalised recommendations