Behavioral Ecology and Sociobiology

, Volume 64, Issue 1, pp 1–11

Reproductive plasticity, oviposition site selection, and maternal effects in fragmented landscapes



Traditionally, evolutionary ecology and conservation biology have primarily been concerned with how environmental changes affect population size and genetic diversity. Recently, however, there has been a growing realization that phenotypic plasticity can have important consequences for the probability of population persistence, population growth, and evolution during rapid environmental change. Habitat fragmentation due to human activities is dramatically changing the ecological conditions of life for many organisms. In this review, we use examples from the literature to demonstrate that habitat fragmentation has important consequences on oviposition site selection in insects, with carryover effects on offspring survival and, therefore, population dynamics. We argue that plasticity in oviposition site selection and maternal effects on offspring phenotypes may be an important, yet underexplored, mechanism by which environmental conditions have consequences across generations. Without considering the impact of habitat fragmentation on oviposition site selection, it will be difficult to assess the effect of fragmentation on offspring fitness, and ultimately to understand the impact of anthropogenic-induced environmental change on population viability.


Butterfly Egg laying Host quality Insect Microclimate Resource distribution Habitat fragmentation Oviposition behavior Life history 


  1. Anthes N, Fartmann T, Hermann G (2008) The Duke of Burgundy butterfly and its dukedom: larval niche variation in Hamearis lucina across Central Europe. J Insect Conserv 12:3–14. doi:10.1007/s10841-007-9084-7 CrossRefGoogle Scholar
  2. Auckland JN, Debinski DM, Clark WR (2004) Survival, movement, and resource use of the butterfly Parnassius clodius. Ecol Entomol 29:139–149. doi:10.1111/j.0307-6946.2004.00581.x CrossRefGoogle Scholar
  3. Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844. doi:10.1146/annurev.ento.47.091201.145300 PubMedCrossRefGoogle Scholar
  4. Badyaev AV (2009) Evolutionary significance of phenotypic accommodation in novel environments: an empirical test of the Baldwin effect. Phil Trans R Soc B 364:1125–1141. doi:10.1098/rstb.2008.0285 PubMedCrossRefGoogle Scholar
  5. Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Phil Trans R Soc B 364:1169–1177. doi:10.1098/rstb.2008.0302 PubMedCrossRefGoogle Scholar
  6. Baguette M, Convie I, Nève G (1996) Male density affects female spatial behaviour in the butterfly Proclossiana eunomia. Acta Oecol 17:225–232Google Scholar
  7. Banks SC, Piggott MP, Stow AJ, Taylor AC (2007) Sex and sociality in a disconnected world: a review of the impacts of habitat fragmentation on animal social interactions. Can J Zool 85:1065–1079. doi:10.1139/Z07-094 CrossRefGoogle Scholar
  8. Battin J (2004) When good animals love bad habitats: ecological traps and the conservation of animal populations. Conserv Biol 18:1482–1491. doi:10.1111/j.1523-1739.2004.00417.x CrossRefGoogle Scholar
  9. Begon M, Parker GA (1986) Should egg size and clutch size decrease with age? Oikos 47:293–302CrossRefGoogle Scholar
  10. Begum S, Tsukuda R, Fujisaki K, Nakasuji F (1996) The effects of cruciferous host plants on morphology, reproductive performance and flight activity in the diamondback moth, Plutella xylostella (Lepidoptera: Yponomentidae). Res Popul Ecol 38:257–263CrossRefGoogle Scholar
  11. Bélisle M (2005) Measuring landscape connectivity: the challenge of behavioral landscape ecology. Ecology 86:1988–1995. doi:10.1890/04-0923 CrossRefGoogle Scholar
  12. Benton TG, Plaistow SJ, Beckerman AP, Lapsley CT, Littlejohns S (2005) Changes in maternal investment in eggs can affect population dynamics. Proc R Soc Lond B Biol Sci 272:1351–1356. doi:10.1098/rspb.2005.3081 CrossRefGoogle Scholar
  13. Bernardo J (1996) The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Amer Zool 36:216–236Google Scholar
  14. Boggs CL (1986) Reproductive strategies of female butterflies: variation in and constraints on fecundity. Ecol Entomol 11:7–15. doi:10.1111/j.1365-2311.1986.tb00274.x CrossRefGoogle Scholar
  15. Boggs CL (1987) Within population variation in the demography of Speyeria mormonia (Lepidoptera, Nymphalidae). Holarctic Ecol 10:175–184Google Scholar
  16. Boggs CL (1997) Reproductive allocation from reserves and income in butterfly species with differing adult diets. Ecology 78:181–191. doi:10.1890/0012-9658(1997)078[0181:RAFRAI]2.0.CO;2 CrossRefGoogle Scholar
  17. Boggs CL, Freeman KD (2005) Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144:353–361. doi:10.1007/s00442-005-0076-6 PubMedCrossRefGoogle Scholar
  18. Braby MF (1994) The significance of egg size variation in butterflies in relation to host plant quality. Oikos 71:119–129CrossRefGoogle Scholar
  19. Brommer JE, Fred MS (1999) Movement of the Apollo butterfly Parnassius apollo related to host plant and nectar plant patches. Ecol Entomol 24:125–131. doi:: 10.1046/j.1365-2311.1999.00190.x CrossRefGoogle Scholar
  20. Brown GP, Shine R (2009) Beyond size-number trade-offs: clutch size as a maternal effect. Phil Trans R Soc B 364:1097–1106. doi:10.1098/rstb.2008.0247 PubMedCrossRefGoogle Scholar
  21. Bukovinszky T, Potting RPJ, Clough Y, van Lenteren JC, Vet LEM (2005) The role of pre- and post-alighting detection mechanisms in the responses to patch size by specialist herbivores. Oikos 109:435–446. doi:10.1111/j.0030-1299.2005.13707.x CrossRefGoogle Scholar
  22. Cain ML, Eccleston J, Kareiva PM (1985) The influence of food-plant dispersion on caterpillar searching success. Ecol Entomol 10:1–7. doi:10.1111/j.1365-2311.1985.tb00529.x CrossRefGoogle Scholar
  23. Carroll SP, Fox CW (2007) Dissecting the evolutionary impacts of plant invasions: bugs and beetles as native guides. Global Change Biol 13:1644–1657. doi:10.1111/j.1365-2486.2007.01403.x CrossRefGoogle Scholar
  24. Carroll AL, Quiring DT (1993) Interactions between size and temperature influence fecundity and longevity of a torticid moth, Zeiraphera canadiensis. Oecologia 93:233–241. doi:10.1007/BF00317676 CrossRefGoogle Scholar
  25. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715. doi:10.1038/7179xia PubMedCrossRefGoogle Scholar
  26. Crean AJ, Marshall DJ (2009) Coping with environmental uncertainty: dynamic bet hedging as a maternal effect. Phil Trans R Soc B 364:1087–1096. doi:10.1098/rstb.2008.0237 PubMedCrossRefGoogle Scholar
  27. Crozier LG (2004) Field transplants reveal summer constraints on a butterfly range expansion. Oecologia 141:148–157. doi:10.1007/s00442-004-1634-z PubMedCrossRefGoogle Scholar
  28. Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75:247–256. doi:10.1111/j.1365-2656.2006.01044.x PubMedCrossRefGoogle Scholar
  29. Dennis RLH, Sparks TH (2006) When is a habitat not a habitat? Dramatic resource use changes under differing weather conditions for the butterfly Plebejus argus. Biol Conserv 129:291–301. doi:10.1016/j.biocon.2005.10.043 CrossRefGoogle Scholar
  30. Dennis RLH, Shreeve TG, Van Dyck H (2003) Towards a functional resource-based concept for habitat: a butterfly biology viewpoint. Oikos 102:417–426. doi:10.1034/j.1600-0579.2003.12492.x CrossRefGoogle Scholar
  31. Dethier VG (1959) Food-plant distribution and larval dispersal as factors affecting insect populations. Can Entomol 88:581–596Google Scholar
  32. Doak P, Kareiva P, Kingsolver J (2006) Fitness consequences of choosy oviposition for a time-limited butterfly. Ecology 87:395–408. doi:10.1890/05-0647 PubMedCrossRefGoogle Scholar
  33. Dover J, Sparks T, Clarke S, Gobbett K, Glossop S (2000) Linear features and butterflies: the importance of green lanes. Agricult Ecosyst Environ 80:227–242. doi:10.1016/S0167-8809(00)00149-3 CrossRefGoogle Scholar
  34. Duckworth RA (2009) Maternal effects and range expansion: a key factor in a dynamic process? Phil Trans R Soc B 364:1075–1086. doi:10.1098/rstb.2008.0294 PubMedCrossRefGoogle Scholar
  35. Einum S, Fleming IA (2004) Environmental unpredictability and offspring size: conservative versus diversified bet-hedging. Evol Ecol Res 6:443–455Google Scholar
  36. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419 CrossRefGoogle Scholar
  37. Fischer K, Bot ANM, Brakefield PM, Zwaan BJ (2003a) Fitness consequences of temperature-mediated egg size plasticity in a butterfly. Func Ecol 17:803–810. doi:10.1111/j.1365-2435.2003.00798.x CrossRefGoogle Scholar
  38. Fischer K, Brakefield PM, Zwaan BJ (2003b) Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology 84:3138–3147. doi:10. 1890/02-0733 CrossRefGoogle Scholar
  39. Fischer K, Zwaan BJ, Brakefield PM (2004) Genetic and environmental sources of egg size variation in the butterfly Bicyclus anynana. Heredity 92:163–169. doi:10.1038/sj.hdy.6800382 PubMedCrossRefGoogle Scholar
  40. Floater GJ (2001) Habitat complexity, spatial interference, and "minimum risk distribution": a framework for population stability. Ecol Monogr 71:447–468. doi:10.1890/0012-9615(2001)071[0447:HCSIAM]2.0.CO;2 Google Scholar
  41. Fox CW, Waddell KJ, Mousseau TA (1995) Parental host plant affects offspring life histories in a seed beetle. Ecology 76:402–411CrossRefGoogle Scholar
  42. Fox CW, Nilsson JA, Mousseau TA (1997) The ecology of diet expansion in a seed-feeding beetle - preexisting variation, rapid adaptation and maternal effects? Evol Ecol 11:183–194CrossRefGoogle Scholar
  43. Gibbs M, Breuker CJ (2006) Effect of larval rearing density on adult life-history traits and developmental stability of the dorsal eyespot pattern in speckled wood butterfly, Pararge aegeria. Entomol Exp Appl 118:41–47. doi:10.1111/j.1570-7458.2006.00361.x CrossRefGoogle Scholar
  44. Gibbs M, Lace LA, Jones MJ, Moore AJ (2004a) Intraspecific competition in the speckled wood butterfly Pararge aegeria: effect of rearing density and gender on larval life history. J Insect Sci 4:16 available online: Scholar
  45. Gibbs M, Lace LA, Jones MJ, Moore AJ (2004b) Differences in search behaviour of the two Madeiran speckled butterflies. Pararge aegeria and Pararge xiphia (Lepidoptera: Satyridae), implications for interspecific competition? Boletim do Museu Municipal do Funchal. 55:5–15Google Scholar
  46. Gibbs M, Lace LA, Jones MJ, Moore AJ (2005) Egg size-number trade-off and a decline in oviposition site choice quality: female Pararge aegeria butterflies pay a cost of having males present at oviposition. J Insect Sci 5:39 available online: Scholar
  47. Gibbs M, Lace LA, Jones MJ, Moore AJ (2006) Multiple host-plant use may arise from gender-specific fitness effects. J Insect Sci 6:04 available online: Scholar
  48. Ginzburg LR, Taneyhill DE (1994) Population cycles of forest Lepidoptera—a maternal effect hypothesis. J Anim Ecol 63:79–92CrossRefGoogle Scholar
  49. Gonzalez-Gomez P, Estades CF, Simonetti JA (2006) Strengthened insectivory in a temperate fragmented forest. Oecologia 148:137–143. doi:10.1007/s00442-005-0338-3 PubMedCrossRefGoogle Scholar
  50. Gotthard K (2004) Growth strategies and optimal body size in temperate Pararginii butterflies. Integr Comp Biol 44:471–479. doi:10.1093/icb/44.6.471 CrossRefGoogle Scholar
  51. Gotthard K, Berger D, Walters R (2007) What keeps insects small? Time limitation during oviposition reduces the fecundity benefit of female size in a butterfly. Am Nat 169:768–779. doi:10.1086/516651 PubMedCrossRefGoogle Scholar
  52. Gu H, Danthanarayana W (1992) Influence of larval rearing conditions on the body size and flight capacity of Epiphyas postvittana moths. Aust J Zool 40:573–581. doi:10.1071/ZO9920573 CrossRefGoogle Scholar
  53. Gutiérrez D, Thomas CD (2000) Marginal range expansion in a host-limited butterfly species Gonepteryx rhamni. Ecol Entomol 25:165–170. doi:10.1046/j.1365-2311.2000.00241.x CrossRefGoogle Scholar
  54. Hanks LM (1999) Influence of the larval host plant on reproductive strategies of cerambycid beetles. Annu Rev Entomol 44:483–505. doi:10.1146/annurev.ento.44.1.483 PubMedCrossRefGoogle Scholar
  55. Hanski I, Saastamoinen M, Ovaskainen O (2006) Dispersal-related life-history trade-offs in a butterfly metapopulation. J Anim Ecol 75:91–100. doi:10.1111/j.1365-2656.2005.01024.x PubMedCrossRefGoogle Scholar
  56. Harvey GT (1977) Mean weight and rearing performance of successive egg clusters of eastern spruce budworm (Lepidoptera: Tortricidae). Can Entomol 109:487–496Google Scholar
  57. Haynes KJ, Cronin JT (2003) Matrix composition affects the spatial ecology of a prairie planthopper. Ecology 84:2856–2866. doi:10.1890/02-0611 CrossRefGoogle Scholar
  58. Heard SB, Remer LC (1997) Clutch-size behavior and coexistence in ephemeral-patch competition models. Am Nat 150:744–770. doi:10.1086/286092 PubMedCrossRefGoogle Scholar
  59. Hellmann JJ (2002) The effect of an environmental change on mobile butterfly larvae and the nutritional quality of their hosts. J Anim Ecol 71:925–936. doi:10.1046/j.1365-2656.2002.00658.x CrossRefGoogle Scholar
  60. Hill JK, Hughes CL, Dytham C, Searle JB (2006) Genetic diversity in butterflies: interactive effects of habitat fragmentation and climate-driven range expansion. Biol Lett 2:152–154. doi:10.1098/rsbl.2005.0401 PubMedCrossRefGoogle Scholar
  61. Hopkins RJ, Van Loon JJA (2001) The effect of host acceptability on oviposition and egg accumulation by the small white butterfly, Pieris rapae. Physiol Entomol 26:149–157. doi:10.1046/j.1365-3032.2001.00228.x CrossRefGoogle Scholar
  62. Hopper KR, Rosenheim JA, Prout T, Oppenheim SJ (2003) Within-generation bet hedging: a seductive explanation? Oikos 101:219–222. doi:10.1034/j.1600-0706.2003.12051.x CrossRefGoogle Scholar
  63. Huang CC, Yang RL, Lee HJ, Horng SB (2005) Beyond fecundity and longevity: trade-offs between reproduction and survival mediated by behavioural responses of the seed beetle, Callosobruchus maculatus. Physiol Entomol 30:81–387. doi:10.1111/j.1365-3032.2005.00474.x Google Scholar
  64. Hughes CL, Hill JK, Dytham C (2003) Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc R Soc Lond B Biol Sci 270:S147–S150. doi:10.1098/rsbl.2003.0049 CrossRefGoogle Scholar
  65. Hughes J, Hern A, Dorn S (2004) Preimaginal environment influences adult flight in Cydia molesta (Lepidoptera: Tortricidae). Environ Entomol 33:1155–1162Google Scholar
  66. Inchausti P, Ginzburg LR (2009) Maternal effects mechanism of population cycling: a formidable competitor to the traditional predator-prey view. Phil Trans R Soc B 364:1117–1124. doi:10.1098/rstb.2008.0292 PubMedCrossRefGoogle Scholar
  67. Jallow MF, Zalucki MP (2003) Relationship between oviposition preference and offspring performance in Australian Helicoverpa armigera (Hübner; Lepidoptera: Noctuidae). Aust J Entomol 42:343–348. doi:10.1046/j.1440-6055.2003.00365.x CrossRefGoogle Scholar
  68. Janmaat AF, Myers JH (2007) Host-plant effects the expression of resistance to Baillus thuringiensis kurstaki in Trichoplusia ni (Hubner): an important factor in resistance evolution. J Evol Biol 20:62–69. doi:10.1111/j.1420-9101.2006.01232.x PubMedCrossRefGoogle Scholar
  69. Janz N, Nylin S, Wedell N (1994) Host-plant utilization in the comma butterfly - sources of variation and evolutionary implications. Oecologia 99:132–140CrossRefGoogle Scholar
  70. Janz N, Bergstrom A, Sjogren A (2005) The role of nectar sources for oviposition decisions of the common blue butterfly Polyommatus icarus. Oikos 109:535–538. doi:10.1111/j.0030-1299.2005.13817.x CrossRefGoogle Scholar
  71. Javois J, Tammaru T (2004) Reproductive decisions are sensitive to cues of life expectancy: the case of a moth. Anim Behav 68:249–255. doi:10.1016/j.anbehav.2003.10.022 CrossRefGoogle Scholar
  72. Jervis MA, Boggs CL, Ferns PN (2005) Egg maturation strategy and its associated trade-offs: a synthesis focusing on Lepidoptera. Ecol Entomol 30:359–375. doi:10.1111/j.0307-6946.2005.00712.x CrossRefGoogle Scholar
  73. Jervis MA, Ellers J, Harvey JA (2008) Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Ann Rev Entomol 53:361–385. doi:10.1146/annurev.ento.53.103106.093433 CrossRefGoogle Scholar
  74. Jones RE (1977) Search behaviour: a study of three caterpillar species. Behaviour 60:237–259. doi:10.1163/156853977X00225 CrossRefGoogle Scholar
  75. Jones RE (2001) Mechanisms for locating resources in space and time: impacts on the abundance of insect herbivores. Austral Ecol 26:518–524. doi:10.1046/j.1442-9993.2001.01147.x CrossRefGoogle Scholar
  76. Jones MJ, Lace LA, Harrison EC, Stevens-Wood B (1998) Territorial behaviour in the speckled wood butterflies Pararge xiphia and P. aegeria of Madeira: a mechanism for interspecific competition. Ecography 21:297–305. doi:10.1111/j.1600-0587.1998.tb00567.x CrossRefGoogle Scholar
  77. Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. Am Nat 161:601–614. doi:10.1086/368289 PubMedCrossRefGoogle Scholar
  78. Johnson CG (1963) Physiological factors in insect migration by flight. Nature 198:423–427. doi:10.1038/198423a0 CrossRefGoogle Scholar
  79. Karlsson B, Van Dyck H (2005) Does habitat fragmentation affect temperature-related life-history traits? A laboratory test with a woodland butterfly. Proc R Soc Lond B Biol Sci 272:1257–1263. doi:10.1098/rspb.2005.3074 CrossRefGoogle Scholar
  80. Karlsson B, Wiklund C (1985) Egg weight variation in relation to egg mortality and starvation endurance of newly hatched larvae in some satyrid butterflies. Ecol Entomol 10:205–211. doi:10.1111/j.1365-2311.1985.tb00549.x CrossRefGoogle Scholar
  81. Karlsson B, Wiklund C (2005) Butterfly life history and temperature adaptations; dry open habitats select for increased fecundity and longevity. J Anim Ecol 74:99–104. doi:10.1111/j.1365-2656.2004.00902.x CrossRefGoogle Scholar
  82. Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond B Biol Sci 270:417–423. doi:10.1098/rspb.2002.2247 CrossRefGoogle Scholar
  83. Klok CJ, Chown SL (1999) Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Func Ecol 13:417–427. doi:10.1046/j.1365-2435.1999.00324.x CrossRefGoogle Scholar
  84. Kotiaho JS, Kaitala V, Komonen A, Paivinen J (2005) Predicting the risk of extinction from shared ecological characteristics. Proc Natl Acad Sci USA 102:1963–1967. doi:10.1073/pnas.0406718102 PubMedCrossRefGoogle Scholar
  85. Kriska G et al (2006) Why do red and dark-coloured cars lure aquatic insects? The attraction of water insects to car paintwork explained by reflection-polarization signals. Proc R Soc Lond B Biol Sci 273:1667–1671. doi:10.1098/rspb.2006.3500 CrossRefGoogle Scholar
  86. Kristian WB (2003) The role of habitat selection behavior in population dynamics: source-sink systems and ecological traps. Oikos 103:457–468. doi:10.1034/j.1600-0706.2003.12192.x CrossRefGoogle Scholar
  87. Kührt U, Samietz J, Dorn S (2006) Thermal response in adult codling moth. Physiol Entomol 31:80–88. doi:10.1111/j.1365-3032.2005.00478.x CrossRefGoogle Scholar
  88. Lance DR (1983) Host-seeking behaviour of the gypsy moth: the influence of polyphagy and highly apparent host plants. In: Ahmad S (ed) Herbivorous insects: host seeking behaviour and mechanisms. Academic, New York, pp 201–219Google Scholar
  89. Lastra JAS, Barrios LEG, Rojas JC, Rivera HP (2006) Host selection behavior of Leptophobia aripa (Lepidoptera: Pieridae). Florida Entomol 89:127–134CrossRefGoogle Scholar
  90. Lawrence WS (1990) The effects of group-size and host species on development and survivorship of a gregarious caterpillar Halisidota caryae (Lepidoptera, Arctiidae). Ecol Entomol 15:53–62. doi:10.1111/j.1365-2311.1990.tb00783.x CrossRefGoogle Scholar
  91. Leather SR, Burnand AC (1987) Factors affecting life-history parameters of the pine beauty moth, Panolis flammea (D&S): the hidden costs of reproduction. Func Ecol 1:331–338CrossRefGoogle Scholar
  92. Louy D, Habel JC, Schmitt T, Assmann T, Meyer M, Müller P (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Gen 8:671–681. doi:10.1007/s10592-006-9213-y CrossRefGoogle Scholar
  93. Mattila N, Kaitala V, Komonen A, Kotiaho JS, Paivinen J (2006) Ecological determinants of distribution decline and risk of extinction in moths. Conserv Biol 20:1161–1168. doi:10.1111/j.1523-1739.2006.00404.x PubMedCrossRefGoogle Scholar
  94. Marshall DJ, Uller T (2007) When is a maternal effect adaptive? Oikos 116:1957–1963. doi:10.1111/j.2007.0030-1299.16203.x CrossRefGoogle Scholar
  95. Mayhew PJ (1997) Adaptive patterns of host-plant selection by phytophagous insects. Oikos 79:417–428CrossRefGoogle Scholar
  96. McKay HV (1991) Egg-laying requirements of woodland butterflies; Brimstones (Gonepteryx rhamni) and alder buckthorn (Frangula alnus). J Appl Ecol 28:731–743CrossRefGoogle Scholar
  97. McVean RIK, Sait SM, Thompson DJ, Begon M (2002) Effects of resource quality on the population dynamics of the Indian meal moth Plodia interpunctella and its granulovirus. Oecologia 131:71–78. doi:10.1007/s00442-001-0862-8 CrossRefGoogle Scholar
  98. Merckx T, Van Dyck H (2007) Habitat fragmentation affects habitat-finding ability of the speckled wood butterfly, Pararge aegeria L. Anim Behav 74:1029–1037. doi:10.1016/j.anbehav.2006.12.020 CrossRefGoogle Scholar
  99. Mevi-Schütz J, Erhardt A (2005) Amino acids in nectar enhance butterfly fecundity: a long awaited link. Am Nat 165:411–419. doi:10.1086/429150 PubMedCrossRefGoogle Scholar
  100. Minkenberg O, Tatar M, Rosenheim JA (1992) Egg load as a major source of variability in insect foraging and oviposition behavior. Oikos 65:134–142CrossRefGoogle Scholar
  101. Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Phil Trans R Soc B– Biol Sci 363:1635–1645. doi:10.1098/rstb.2007.0011 CrossRefGoogle Scholar
  102. Monks A, Kelly D (2003) Motivation models fail to explain oviposition behaviour in the diamondback moth. Physiol Entomol 28:199–208. doi:10.1046/j.1365-3032.2003.00333.x CrossRefGoogle Scholar
  103. Mousseau TA, Dingle H (1991) Maternal effects in insect life histories. Ann Rev Entomol 36:511–534. doi:10.1146/annurev.en.36.010191.002455 CrossRefGoogle Scholar
  104. Mousseau T, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, OxfordGoogle Scholar
  105. Neve G, Barascud B, Descimon H, Baguette M (2008) Gene flow rise with habitat fragmentation in the bog fritillary butterfly (Lepidoptera: Nymphalidae). BMC Evol Biol 8:84. doi:10.1186/1471-2148-8-84 PubMedCrossRefGoogle Scholar
  106. Nylin S, Janz N (1996) Host plant preferences in the comma butterfly (Polygonia c- album): do parents and offspring agree? Ecoscience 3:285–289Google Scholar
  107. Odendaal FJ, Turchin P, Stermitz FR (1989) Influence of host-plant density and male harassment on the distribution of female Euphydryas anicia (Nymphalidae). Oecologia 78:283–288. doi:10.1007/BF00377167 CrossRefGoogle Scholar
  108. Ostaff DP, Quiring DT (2000) Role of the host plant in the decline of populations of a specialist herbivore, the spruce bud moth. J Anim Ecol 69:263–273. doi:10.1046/j.1365-2656.2000.00389.x CrossRefGoogle Scholar
  109. Owen DF, Shreeve TG, Smith AG (1986) Colonization of Madeira by the Speckled Wood Butterfly, Pararge aegeria (Lepidoptera, Satyridae), and its impact on the endemic Pararge xiphia. Ecol Entomol 11:349–352. doi:10.1111/j.1365-2311.1986.tb00312.x CrossRefGoogle Scholar
  110. Papaj DR (2000) Ovarian dynamics and host use. Annu Rev Entomol 45:423–448. doi:10.1146/annurev.ento.45.1.423 PubMedCrossRefGoogle Scholar
  111. Papaj DR, Rausher MD (1987) Genetic differences and phenotypic plasticity as causes of variation in oviposition preference in Battus philenor. Oecologia 74:24–30. doi:10.1007/BF00377341 CrossRefGoogle Scholar
  112. Papaj DR, Mallory HS, Heinz CA (2007) Extreme weather change and the dynamics of oviposition behavior in the pipevine swallowtail, Battus philenor. Oecologia 152:365–375. doi:10.1007/s00442-007-0658-6 PubMedCrossRefGoogle Scholar
  113. Partecke J, Van't Hof TJ, Gwinner E (2004) Differences in the timing of reproduction between urban and forest European Blackbirds (Turdus merula): results of phenotypic plasticity or genetic differences? Proc R Soc Lond B Biol Sci 271:1995–2001. doi:10.1098/rspb.2004.2821 CrossRefGoogle Scholar
  114. Plaistow SJ, Benton TG (2009) The influence of context-dependent maternal effects on population dynamics: an experimental test. Phil Trans R Soc B 364:1049–1058. doi:10.1098/rstb.2008.0251 PubMedCrossRefGoogle Scholar
  115. Pollard E (1988) Temperature, rainfall and butterfly numbers. J Appl Ecol 25:819–828CrossRefGoogle Scholar
  116. Purvis A, Gittleman JL, Cowlishaw G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B Biol Sci 267:1947–1952. doi:10.1098/rspb.2000.1234 CrossRefGoogle Scholar
  117. Rabasa SG, Gutiérrez D, Escudero A (2005) Egg laying by a butterfly on a fragmented host plant: a multi-level approach. Ecography 28:629–639. doi:10.1111/j.2005.0906-7590.04229.x CrossRefGoogle Scholar
  118. Rabasa S, Gutiérrez D, Escudero A (2008) Relative importance of host plant patch geometry and habitat quality on the patterns of occupancy, extinction and density of the monophagous butterfly Iolana iolas. Oecologia 156:491–503. doi:10.1007/s00442-008-1008-z PubMedCrossRefGoogle Scholar
  119. Räsänen K, Kruuk LEB (2007) Maternal effects and evolution at ecological time-scales. Func Ecol 21:408–421. doi:10.1111/j.1365-2435.2007.01246.x CrossRefGoogle Scholar
  120. Rausher MD (1979) Larval habitat suitability and oviposition preference in three related butterflies. Ecology 60:503–511. doi:10.2307/1936070 CrossRefGoogle Scholar
  121. Rausher MD (1980) Host abundance, juvenile survival and oviposition preference in Battus philenor. Evolution 34:342–355CrossRefGoogle Scholar
  122. Rausher MD (1983) Alteration of oviposition behaviour by Battus philenor butterflies in response to variation in host-plant density. Ecology 64:1028–1034. doi:10.2307/1937810 CrossRefGoogle Scholar
  123. Resetarits WJ (1996) Oviposition site choice and life history evolution. Am Zool 36:205–215. doi:10.1093/icb/36.2.205 Google Scholar
  124. Roff DA (2002) Life history evolution. Sinauer, SunderlandGoogle Scholar
  125. Roitberg BD, Robertson IC, Tyerman JGA (1999) Vive la variance: a functional oviposition theory for insect herbivores. Entomol Exp Appl 91:187–194. doi:10.1046/j.1570-7458.1999.00483.x CrossRefGoogle Scholar
  126. Rosenheim JA (1996) An evolutionary argument for egg limitation. Evolution 50:2089–2094CrossRefGoogle Scholar
  127. Roy DB, Thomas JA (2003) Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia 134:439–444. doi:10.1007/s00442-002-1121-3 PubMedGoogle Scholar
  128. Sappington TW, Showers WB (1992) Reproductive maturity, mating status, and long-duration flight behavior of Agrotis ipsilon (Lepidoptera, Noctuidae) and the conceptual misuse of the oogenesis flight syndrome by entomologists. Environ Entomol 21:677–688Google Scholar
  129. Schlaepfer MA, Runge MC, Sherman PW (2002) Ecological and evolutionary traps. Trends Ecol Evol 17:474–480. doi:10.1016/S0169-5347(02)02580-6 CrossRefGoogle Scholar
  130. Schneider C, Dover J, Fry GLA (2003) Movement of two grassland butterflies in the same habitat network: the role of adult resources and size of the study area. Ecol Entomol 28:219–227. doi:10.1046/j.1365-2311.2003.00494.x CrossRefGoogle Scholar
  131. Shapiro AM (1970) The role of sexual behaviour in density-related dispersal of Pierid butterflies. Am Nat 104:367–372. doi:10.1086/282670 CrossRefGoogle Scholar
  132. Seger J, Brockmann HJ (1987) What is bet-hedging? Oxf Surv Evol Biol 4:182–211Google Scholar
  133. Seko T, Miyatake T, Fujioka S, Nakasuji F (2006) Genetic and environmental sources of egg size, fecundity and body size in the migrant skipper, Parnara guttata guttata (Lepidoptera: Hesperiidae). Popul Ecol 48:225–232. doi:10.1007/s10144-006-0266-z CrossRefGoogle Scholar
  134. Sevenster JG, Ellers J, Driessen G (1998) An evolutionary argument for time limitation. Evolution 52:1241–1244CrossRefGoogle Scholar
  135. Springer P, Boggs CL (1986) Resource allocation to oocytes: heritable variation with altitude in Colias philodice eriphyle (Lepidoptera). Am Nat 127:252–256. doi:10.1086/284483 CrossRefGoogle Scholar
  136. Stamp NE (1980) Egg deposition patterns in butterflies: why do some species cluster their eggs rather than deposit them singly? Am Nat 115:367–380. doi:10.1086/283567 CrossRefGoogle Scholar
  137. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  138. Stefanescu C, Penuelas J, Sardans J, Filella I (2006) Females of the specialist butterfly Euphydryas aurinia (Lepidoptera: Nymphalinae: Melitaeini) select the greenest leaves of Lonicera implexa (Caprifoliaceae) for oviposition. Eur J Entomol 103:569–574Google Scholar
  139. Steffan-Dewenter I, Tscharntke T (2002) Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review. Biol Conserv 104:275–284. doi:10.1016/S0006-3207(01)00192-6 CrossRefGoogle Scholar
  140. Steigenga MJ, Fischer K (2007a) Ovarian dynamics, egg size, and egg number in relation to temperature and mating status in a butterfly. Entomol Exp Appl 125:195–203. doi:10.1111/j.1570-7458.2007.00610.x CrossRefGoogle Scholar
  141. Steigenga MJ, Fischer K (2007b) Within- and between-generation effects of temperature on life-history traits in a butterfly. J Therm Biol 32:396–405. doi:10.1016/j.jtherbio.2007.06.001 CrossRefGoogle Scholar
  142. Steigenga MJ, Zwaan BJ, Brakefield PM, Fischer K (2005) The evolutionary genetics of egg size plasticity in a butterfly. J Evol Biol 18:281–289. doi:10.1111/j.1420-9101.2004.00855.x PubMedCrossRefGoogle Scholar
  143. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879. doi:10.1126/science.1094678 PubMedCrossRefGoogle Scholar
  144. Tabashnik BE, Wheelock H, Rainbolt JD, Watt WB (1981) Individual variation in oviposition preference in the butterfly, Colias eurythem. Oecologia 50:225–230. doi:10.1007/BF00348042 CrossRefGoogle Scholar
  145. Tammaru T, Javois J (2005) When being alive implies being safe: variation in mortality rates can cause oviposition selectivity to increase with age. Oikos 111:649–653. doi:10.1098/rspb.2003.2479 CrossRefGoogle Scholar
  146. Tammaru T, Ruohomaki K, Montola M (2000) Crowding-induced plasticity in Epirrita autumnata (Lepidoptera: Geometridae): weak evidence of specific modifications in reaction norms. Oikos 90:171–181. doi:10.1034/j.1600-0706.2000.900117.x CrossRefGoogle Scholar
  147. Tatar M (1991) Clutch size in the swallowtail butterfly, Battus philenor - the role of host quality and egg load within and among seasonal flights in California. Behav Ecol Sociobiol 28:337–344. doi:10.1007/BF00164383 CrossRefGoogle Scholar
  148. Taylor PD, Merriam G (1995) Wing morphology of a forest damselfly is related to landscape structure. Oikos 73:43–48CrossRefGoogle Scholar
  149. Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350. doi:10.1016/S0169-5347(03)00069-7 CrossRefGoogle Scholar
  150. Thomas CD, Thomas JA, Warren MS (1992) Distributions of occupied and vacant butterfly habitats in fragmented landscapes. Oecologia 92:563–567. doi:10.1007/BF00317850 CrossRefGoogle Scholar
  151. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89. doi:10.1146/annurev.en.36.010191.000433 CrossRefGoogle Scholar
  152. Torres-Vila LM, Rodriguez-Molina MC (2002) Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana. Oikos 99:272–283. doi:10.1034/j.1600-0706.2002.990207.x CrossRefGoogle Scholar
  153. Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B Biol Sci 270:467–473. doi:10.1098/rspb. 2002.2246 CrossRefGoogle Scholar
  154. Tscharntke T, Brandl R (2004) Plant-insect interactions in fragmented landscapes. Annu Rev Entomol 49:405–430. doi:10.1146/annurev.ento.49.061802.123339 PubMedCrossRefGoogle Scholar
  155. Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini review. Ecol Res 17:229–239. doi:10.1046/j.1440-1703.2002.00482.x CrossRefGoogle Scholar
  156. Turlure C, Van Dyck H (2009) On the consequences of aggressive male mate-locating behaviour and microclimate for female host plant use in the butterfly Lycaena hippothoe. Behav Ecol Sociobiol 62(11): 1581-1591Google Scholar
  157. Uller T (2008) Developmental plasticity and the evolution of parental effects. Trends Ecol Evol 23:432–438. doi:10.1016/j.tree.2008.04.005 PubMedCrossRefGoogle Scholar
  158. Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217. doi:10.1111/j.1523-1739.2006.00337.x PubMedCrossRefGoogle Scholar
  159. Vandergast AG, Bohonak AJ, Weissman DB, Fisher RN (2007) Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol Ecol 16:977–992. doi:10.1111/j.1365-294X.2006.03216.x PubMedCrossRefGoogle Scholar
  160. Van Dyck H, Matthysen E (1999) Habitat fragmentation and insect flight: a changing “design” in a changing landscape? Trends Ecol Evol 14:172–174. doi:10.1016/S0169-5347(99)01610-9 PubMedCrossRefGoogle Scholar
  161. Wedell N, Nylin S, Janz N (1997) Effects of larval host plant and sex on the propensity to enter diapause in the comma butterfly. Oikos 78:569–575CrossRefGoogle Scholar
  162. Wellington WG (1965) Some maternal influences on progeny quality in the western tent caterpillar Malacosoma plunale (Dyar). Can Entomol 97:1–14CrossRefGoogle Scholar
  163. West-Eberhard MJ (2003) Developmental plasticity and Evolution. Oxford University Press, OxfordGoogle Scholar
  164. Wheeler D (1996) The role of nourishment in oogenesis. Annu Rev Entomol 41:407–431. doi:10.1146/annurev.en.41.010196.002203 PubMedCrossRefGoogle Scholar
  165. Wickman P-O (1986) Courtship solicitation by females of the small heath butterfly Coenonympha pamphilus (Lepidoptera: Satyridae) and their behaviour in relation to male territories before and after copulation. Anim Behav 34:153–157. doi:10.1016/0003-3472(86)90017-5 CrossRefGoogle Scholar
  166. Wickman P-O, Karlsson B (1987) Changes in egg color, egg weight and oviposition rate with the number of eggs laid by wild females of the small heath butterfly, Coenonympha pamphilus. Ecol Entomol 12:109–114. doi:10.1111/j.1365-2311.1987.tb00989.x CrossRefGoogle Scholar
  167. Wiklund C, Karlsson B (1984) Egg size variation in satyrid butterflies: adaptive vs. historical, “Bauplan”, and mechanistic explanations. Oikos 43:391–400CrossRefGoogle Scholar
  168. Wiklund C, Persson A (1983) Fecundity, egg wight variation and its relation to offspring fitness in the speckled wood butterfly, Pararge aegeria, or why don't butterfly females lay more eggs? Oikos 40:53–63CrossRefGoogle Scholar
  169. Wiklund C, Karlsson B, Forsberg J (1987) Adaptive versus constraint explanations for egg-to-body size relationships in two butterfly families. Am Nat 130:828–838. doi:10.1086/284750 CrossRefGoogle Scholar
  170. Yamamura K (1999) Relation between plant density and arthropod density in cabbage. Res Popul Ecol 41:177–182CrossRefGoogle Scholar
  171. Zalucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393. doi:10.1146/annurev.ento.47.091201.145220 PubMedCrossRefGoogle Scholar
  172. Zschokke S, Dolt C, Rusterholz HP, Oggier P, Braschler B, Thommen GH, Ludin E, Erhardt A, Baur B (2000) Short-term responses of plants and invertebrates to experimental small-scale grassland fragmentation. Oecologia 125:559–572. doi:10.1007/s004420000483 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Behavioural Ecology & Conservation Group, Biodiversity Research CentreUniversité Catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations