Advertisement

Behavioral Ecology and Sociobiology

, Volume 63, Issue 7, pp 1089–1096 | Cite as

Social network analysis and valid Markov chain Monte Carlo tests of null models

  • Stefan Krause
  • Lutz Mattner
  • Richard James
  • Tristan Guttridge
  • Mark J. Corcoran
  • Samuel H. Gruber
  • Jens Krause
Methods

Abstract

Analyses of animal social networks derived from group-based associations often rely on randomisation methods developed in ecology (Manly, Ecology 76:1109–1115, 1995) and made available to the animal behaviour community through implementation of a pair-wise swapping algorithm by Bejder et al. (Anim Behav 56:719–725, 1998). We report a correctable flaw in this method and point the reader to a wider literature on the subject of null models in the ecology literature. We illustrate the importance of correcting the method using a toy network and use it to make a preliminary analysis of a network of associations among eagle rays.

Keywords

Null models Social network analysis Markov chain Monte Carlo tests Group living 

Notes

Acknowledgements

JK acknowledges the financial support from the NERC and the EPSRC, and TG was supported by a Leverhulme fellowship. SK is grateful to Ralf Schiffer for some very useful initial discussions. We thank Herbert Krause for providing the drawing in Fig. 1.

References

  1. Barnard GA (1963) Discussion of a paper by M. S. Bartlett. J R Stat Soc B 25:294Google Scholar
  2. Bejder L, Fletcher D, Bräger S (1998) A method for testing association patterns of social animals. Anim Behav 56:719–725PubMedCrossRefGoogle Scholar
  3. Besag J, Clifford P (1989) Generalized Monte Carlo significance tests. Biometrika 76:633–642CrossRefGoogle Scholar
  4. Corcoran MJ, Gruber SH (1999) The use of photoidentification to study social organization of the spotted eagle ray, Aetobatus narinari (Euphrasen 1790), at Bimini, Bahamas: a preliminary report. Bahamas J Sci 7(1):21–27Google Scholar
  5. Croft DP, James R, Thomas POR, Hathaway C, Mawdsley D, Laland KN, Krause J (2006) Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav Ecol Sociobiol 59(5):644–650CrossRefGoogle Scholar
  6. Croft DP, James R, Krause J (2008) Exploring animal social networks. Princeton University Press, PrincetonGoogle Scholar
  7. Dwass M (1957) Modified randomization tests for nonparametric hypotheses. Ann Math Stat 28:181–187CrossRefGoogle Scholar
  8. Gotelli NJ, Entsminger GL (2001) Swap and fill algorithms in null model analysis: rethinking the knights tour. Oecologia 129:281–291CrossRefGoogle Scholar
  9. Gotelli NJ, Entsminger GL (2003) Swap algorithms in null model analysis. Ecology 84:532–535CrossRefGoogle Scholar
  10. Jöckel KH (1986) Finite sample properties and asymptotic efficiency of Monte Carlo tests. Ann Stat 14:336–347CrossRefGoogle Scholar
  11. Kemeny JG, Snell JL (1983) Finite Markov chains. Springer, New YorkGoogle Scholar
  12. Krause J, Croft DP, James R (2007) Social network theory in the behavioural sciences: potential applications. Behav Ecol Sociobiol 62:15–27CrossRefGoogle Scholar
  13. Krause J, Lusseau D, James R (2009) Animal social networks: an introduction. Behav Ecol Sociobiol. doi: 10.1007/s00265-009-0747-0
  14. Lehsten V, Harmand P (2006) Null models for species co-occurrence patterns: assessing bias and minimum iteration number for the sequential swap. Ecography 29:786–792CrossRefGoogle Scholar
  15. Manly BFJ (1995) A note on the analysis of species co-occurrences. Ecology 76:1109–1115CrossRefGoogle Scholar
  16. Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology, 3rd edn. Chapman & Hall, LondonGoogle Scholar
  17. Manly B, Sanderson JG (2002) A note on null models: justifying the methodology. Ecology 83:580–582CrossRefGoogle Scholar
  18. Miklós I, Podani J (2004) Randomizations of presence–absence matrices: comments and new algorithms. Ecology 85:86–92CrossRefGoogle Scholar
  19. Pitcher TJ, Parrish JK (1993) Functions of shoaling behavior in teleosts. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London, pp 363–439Google Scholar
  20. Raftery AE, Lewis SM (1996) Implementing MCMC. In: Gilks WR et al (eds) Markov chain Monte Carlo in practice. Chapman and Hall, London, pp 115–130Google Scholar
  21. Ryser HJ (1957) Combinatorial properties of matrices of zeros and ones. Can J Math 9:371–377Google Scholar
  22. Sih A, Hanser SF, McHugh KA (2009) Social network theory: new insights and issues for behavioral ecologists. Behav Ecol Sociobiol. doi: 10.1007/s00265-009-0725-6 Google Scholar
  23. Whitehead H, Dufault S (1999) Techniques for analyzing vertebrate social structure using identified individuals: review and recommendations. Adv Stud Behav 28:33–74CrossRefGoogle Scholar
  24. Wolf JBW, Mawdsley D, Trillmich F, James R (2007) Social structure in a colonial mammal: unravelling hidden structural layers and their foundations by network analysis. Anim Behav 74:1293–1302CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stefan Krause
    • 1
  • Lutz Mattner
    • 2
  • Richard James
    • 4
  • Tristan Guttridge
    • 5
  • Mark J. Corcoran
    • 3
  • Samuel H. Gruber
    • 3
  • Jens Krause
    • 5
  1. 1.Fachbereich Elektrotechnik und InformatikUniversity of Applied Sciences LübeckLübeckGermany
  2. 2.FB IV-MathematikUniversität TrierTrierGermany
  3. 3.Bimini Biological Field StationSouth BiminiBahamas
  4. 4.Department of PhysicsUniversity of BathBathUK
  5. 5.Institute of Integrative and Comparative BiologyUniversity of LeedsLeedsUK

Personalised recommendations