Advertisement

Behavioral Ecology and Sociobiology

, Volume 63, Issue 3, pp 451–460 | Cite as

Shape and efficiency of wood ant foraging networks

  • Jerome Buhl
  • Kerri Hicks
  • Esther R. Miller
  • Sophie Persey
  • Ola Alinvi
  • David J. T. Sumpter
Original Paper

Abstract

We measured the shape of the foraging trail networks of 11 colonies of the wood ant Formica aquilonia (Formica rufa group). We characterized these networks in terms of their degree of branching and the angles between branches, as well as in terms of their efficiency. The measured networks were compared with idealized model networks built to optimize one of two components of efficiency, total length (i.e., total amount of trail) and route factor (i.e., average distance between nest and foraging site). The analysis shows that the networks built by the ants obtain a compromise between the two modes of efficiency. These results are largely independent of the size of the network or colony size. The ants’ efficiency is comparable to that of networks built by humans but achieved without the benefit of centralized control.

Keywords

Networks Trunk trails Ants Formica 

Notes

Acknowledgements

This research was supported by the Royal Society, the Human Frontiers Science Program (grant RGP51/2007), and the Australian Research Council. We also thank three anonymous referees for their help and suggestions.

References

  1. Acosta FJ, Lopez F, Serrano JM (1993) Branching angles of ant trunk trails as an optimization cue. J Theor Biol 160:297–310CrossRefGoogle Scholar
  2. Anderson C, McShea DW (2001) Intermediate-level parts in insect societies: adaptive structures that ants build away from the nest. Insectes Soc 48:291–301CrossRefGoogle Scholar
  3. Azcarate FM, Peco B (2003) Spatial patterns of seed predation by harvester ants (Messor Forel) in Mediterranean grassland and scrubland. Insectes Soc 50:120–126. doi: 10.1007/s00040-003-0635-y CrossRefGoogle Scholar
  4. Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD (2007) Biological solutions to transport network design. Proc R Soc B 274:2307–2315. doi: 10.1098/rspb.2007.0459 PubMedCrossRefGoogle Scholar
  5. Bollobas B (1998) Modern graph theory. Springer, BerlinGoogle Scholar
  6. Bonabeau E, Dorigo M, Theraulaz G (2000) Inspiration for optimization from social insect behaviour. Nature 406:39–42. doi: 10.1038/35017500 PubMedCrossRefGoogle Scholar
  7. Brian MV (1955) Food collection by a Scottish ant community. J Anim Ecol 24:336–352CrossRefGoogle Scholar
  8. Buhl J, Solé RV, Valverde S, Deneubourg JL, Theraulaz G (2004) Efficiency and robustness in ant networks of galleries. Eur Phys J B 42:123–129. doi: 10.1140/epjb/e2004-00364-9 CrossRefGoogle Scholar
  9. Buhl J, Gautrais J, Reeves N, Solé RV, Valverde S, Kuntz P, Theraulaz G (2006) Topological patterns in street networks of self-organized urban settlements. Eur Phys J B 49:512–513. doi: 10.1140/epjb/e2006-00085-1 CrossRefGoogle Scholar
  10. Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73:066107. doi: 10.1103/PhysRevE.73.066107 CrossRefGoogle Scholar
  11. Chauvin R (1962) Observations sur les pistes de Formica polyctena. Insectes Soc 9:311–321CrossRefGoogle Scholar
  12. Cheriton D, Tarjan RE (1976) Finding minimum spanning trees. SIAM J Comput 5:724–742CrossRefGoogle Scholar
  13. Deneubourg JL, Goss S (1989) Collective patterns and decision making. Ethol Ecol Evol 1:295–311Google Scholar
  14. Detrain C, Tasse O, Versaen M, Pasteels JM (2000) A field assessment of optimal foraging in ants: trail patterns and seed retrieval by the European harvester ant Messor barbarus. Insectes Soc 47:56–62. doi: 10.1007/s000400050009 CrossRefGoogle Scholar
  15. Dodds PS, Rothman DH (2000a) Geometry of river networks. I. Scaling, fluctuations, and deviations. Phys Rev E 63:016115. doi: 10.1103/PhysRevE.63.016115 CrossRefGoogle Scholar
  16. Dodds PS, Rothman DH (2000b) Geometry of river networks. II. Distribution of component size and number. Phys Rev E 63:016116. doi: 10.1103/PhysRevE.63.016116 CrossRefGoogle Scholar
  17. Dodds PS, Rothman DH (2000c) Geometry of river networks. III. Characterization of component connectivity. Phys Rev E 63:016117. doi: 10.1103/PhysRevE.63.016117 CrossRefGoogle Scholar
  18. Dorigo M, Stutzle T (2004) Ant colony optimisation. Branford Book, CambridgeGoogle Scholar
  19. Edelstein-Keshet L, Watmough J, Ermentrout GB (1995) Trail following in ants: individual properties determine population behaviour. Behav Ecol Sociobiol 36:119–133. doi: 10.1007/BF00170717 CrossRefGoogle Scholar
  20. Elton CS (1932) Territory among wood ants (Formica rufa L.) at Picket Hill. J Anim Ecol 1:69–76CrossRefGoogle Scholar
  21. Fewell JH (1988) Energetic and time costs of foraging in harvester ants, Pogonomyrmex occidentalis. Behav Ecol Sociobiol 22:401–408CrossRefGoogle Scholar
  22. Franks NR (1989) Army ants: a collective intelligence. Am Sci 77:139–145Google Scholar
  23. Franks N, Gomez N, Goss S, Deneubourg JL (1991) The blind leading the blind in army ant raid patterns: testing a model of self-organization (Hymenoptera: Formicidae). J Insect Behav 4:583–607. doi: 10.1007/BF01048072 CrossRefGoogle Scholar
  24. Ganeshaiah KN, Veena T (1991) Topology of the foraging trails of Leptogenys processionalis—why are they branched? Behav Ecol Sociobiol 29:263–270CrossRefGoogle Scholar
  25. Garey M, Johnson D (1979) Computers and intractability, a guide to the theory of NP-completeness. Freeman, New YorkGoogle Scholar
  26. Gastner MT, Newman MEJ (2006) The spatial structure of networks. Eur Phys J B 49:247–252. doi: 10.1140/epjb/e2006-00046-8 CrossRefGoogle Scholar
  27. Gilbert EN, Pollak OH (1968) Steiner minimal trees. SIAM J Appl Math 16:1–29CrossRefGoogle Scholar
  28. Helbing D, Schweitzer F, Keltsch J, Molnar P (1997) Active walker model for the formation of human and animal trail systems. Phys Rev E 56:2527–2539. doi: 10.1103/PhysRevE.56.2527 CrossRefGoogle Scholar
  29. Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull Geol Soc Am 56:275–370CrossRefGoogle Scholar
  30. Hölldobler B (1976) Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav Ecol Sociobiol 1:3–44CrossRefGoogle Scholar
  31. Hölldobler B, Möglich M (1980) The foraging system of Pheidole militicida (Hymenoptera: Formicidae). Insectes Soc 27:237–264. doi: 10.1007/BF02223667 CrossRefGoogle Scholar
  32. Hölldobler B, Wilson EO (1990) The ants. Springer, BerlinGoogle Scholar
  33. Jackson DE, Holcombe M, Ratnieks FLW (2004) Knowing which way to go—trail geometry gives polarity to ant foraging networks. Nature 432:907–909. doi: 10.1038/nature03105 PubMedCrossRefGoogle Scholar
  34. Kenne M, Dejean A (1999) Spatial distribution, size and density of nests of Myrmicaria opaciventris Emery (Formicidae, Myrmicinae). Insectes Soc 46:179–185. doi: 10.1007/s000400050130 CrossRefGoogle Scholar
  35. Kruskal JB (1956) On the shortest spanning subtree of a graph and the travelling salesman problem. Proc Am Math Soc 2:48–50CrossRefGoogle Scholar
  36. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701. doi: 10.1103/PhysRevLett.87.198701 PubMedCrossRefGoogle Scholar
  37. Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352CrossRefGoogle Scholar
  38. Lopez F, Acosta FJ, Serrano JM (1994) Guerilla vs phalanx strategies of resource capture: growth and structural plasticity in the trunk trail system of the harvester ant Messor barbarus. J Anim Ecol 63:127–138CrossRefGoogle Scholar
  39. Moffett MW (1988) Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus. J Insect Behav 1:309–331. doi: 10.1007/BF01054528 CrossRefGoogle Scholar
  40. Nakagaki T, Yamada H, Toth A (2000) Maze-solving by an amoeboid organism. Nature 407:470. doi: 10.1038/35035159 PubMedCrossRefGoogle Scholar
  41. Nakagaki T, Kobayashi R, Nishiura Y, Ueda T (2004a) Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proc Biol Sci 271:2305–2310. doi: 10.1016/j.physa.2006.01.053 PubMedCrossRefGoogle Scholar
  42. Nakagaki T, Yamada H, Hara M (2004b) Smart network solutions in an amoeboid organism. Biophys Chem 107:1–5. doi: 10.1016/S0301-4622(03)00189-3 PubMedCrossRefGoogle Scholar
  43. Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256. doi: 10.1137/S003614450342480 CrossRefGoogle Scholar
  44. Pelletier JD, Turcotte DL (2000) Shapes of river networks and leaves: are they statistically similar? Philos Trans R Soc Lond B 355:307–311. doi: 10.1098/rstb.2000.0566 CrossRefGoogle Scholar
  45. Pickles W (1935) Populations, territory and interrelationships of the ants Formica fusca, Acanthomyops niger and Myrmica scabrinodis at Garforth (Yorkshire). J Anim Ecol 4:22–31CrossRefGoogle Scholar
  46. Pickles W (1936) Populations and territories of the ants, Formica fusca, Acanthomyops flavus and Myrmica ruginodis at Thornhill (Yorks). J Anim Ecol 5:262–270CrossRefGoogle Scholar
  47. Pickles W (1937) Populations, territories and biomass of ants at Thornhill, Yorkshire, in 1936. J Anim Ecol 6:54–61CrossRefGoogle Scholar
  48. Pickles W (1938) Populations, territories and biomass of ants at Thornhill, Yorkshire, in 1937. J Anim Ecol 7:370–380CrossRefGoogle Scholar
  49. Rosengren R, Sundström L (1987) The foraging system of a red wood ant colony (Formica s. str.)—collecting and defending food through an extended phenotype. In: Pasteels JM, Deneubourg JL (eds) From individual to collective behavior in social insects: les Treilles Workshop. Experientia Supplementum, vol. 54. Birkhauser, Basel, pp 117–137Google Scholar
  50. Rosengren R, Sundström L (1991) The interaction between red wood ants, Cinerea aphids, and Scots pines. A ghost of mutualism past? In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 80–91Google Scholar
  51. Schlick-Steiner BC, Steiner FM, Moder K, Bruckner A, Fiedler K, Christian E (2006) Assessing ant assemblages: pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insectes Soc 53:274–281. doi: 10.1007/s00040-006-0869-6 CrossRefGoogle Scholar
  52. Schneirla TC (1971) Army ants. A study in social organization. Freeman, San FranciscoGoogle Scholar
  53. Schweitzer F, Lao K, Family F (1997) Active random walkers simulate trunk trail formation by ants. Biosystems 41:153–166. doi: 10.1016/S0303-2647(96)01670-X PubMedCrossRefGoogle Scholar
  54. Shepherd JD (1982) Trunk trails and the searching strategy of a leaf-cutter ant, Atta colombica. Behav Ecol Sociobiol 11:77–84CrossRefGoogle Scholar
  55. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geophys Union 38:913–920Google Scholar
  56. Topoff H (1984) Social organization of raiding and emigrations in army ants. Adv Study Behav 14:81–126CrossRefGoogle Scholar
  57. Warme DM, Winter P, Zacharisen M (1998) Exact algorithms for plane Steiner tree problems: a computational study. Technical Report DIKU-TR-98/11. In. Dept. of Computer Science, University of CopenhagenGoogle Scholar
  58. Vasconcellos HL (1990) Foraging activity of two species of leaf-cutting ants (Atta) in a primary forest of the central Amazon. Insectes Soc 37:131–145CrossRefGoogle Scholar
  59. Weber NA (1972) The fungus-culturing behavior of ants. Am Zool 12:577–587Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jerome Buhl
    • 1
  • Kerri Hicks
    • 2
  • Esther R. Miller
    • 2
  • Sophie Persey
    • 2
  • Ola Alinvi
    • 3
  • David J. T. Sumpter
    • 4
  1. 1.School of Biological Sciences and Center for Mathematical BiologyThe University of SydneySydneyAustralia
  2. 2.Department of ZoologyOxford UniversityOxfordUK
  3. 3.UmeåSweden
  4. 4.Mathematics DepartmentUppsala UniversityUppsalaSweden

Personalised recommendations